
1. Introduction to Modern Physics 
 
1.1 Background 

The Standard Model has evolved over the last 100 years as the theory of 
fundamental particles and their interactions.  Prior to the 19th century, it was believed that 
all matter was made solely of atoms which were believed to be fundamental, indivisible, 
elementary particles, having no substructure.  Then, in 1897, J.J. Thomson discovered the 
electron.  Initially, very little was known about the electron except that it was very small 
(much smaller than an atom) and negatively charged.  The concept of the atom quickly 
evolved to consist of a positively charged blob of essentially uniform density enveloping 
negatively charged electrons.  The famous analogy was that it was similar to plum 
pudding with the electrons being the plums surrounded by the positively charged 
pudding.   

Ernest Rutherford was the first to radically alter this initial concept in 1911 when 
he performed his now-famous gold foil experiment.  The experiment consisted of firing 
positively charged α particles (now known to consist of a pair of protons and a pair of 
neutrons) at a piece of gold foil and observing the trajectory at which they scattered.  
According to the “plum pudding” atomic model, Rutherford expected all of the α 
particles to fly straight through the thin layer of gold foil, plowing through the “pudding” 
with ease.  Most of the particles did indeed pass through the foil essentially unimpeded.  
However, some of them unexpectedly scattered straight back at nearly 180 degrees.  
Rutherford later described this result as though “you had fired a 15-inch shell at a piece 
of tissue paper and it came back and hit you”.   

This result shocked the physics community and Rutherford was forced to 
conclude that the contemporary model of the atom was incorrect.  In order to explain how 
some of the α particles could be recoiled at such extreme angles, he proposed that atoms 
were actually made up mostly of empty space.  Rutherford postulated that there was a 
very dense positively charged core or “nucleus” at the center of the atom with a diameter 
on the order of 1 fm and that the electrons then orbited the nucleus, similar to a mini-solar 
system.  With this abrupt conceptual change in atomic thinking the seed of modern 
physics was planted.   

Rutherford’s atomic model envisioned the electrons as tiny particles held in orbit 
around the nucleus due to the electrostatic attraction.  In this respect, it was very much 
like a mini-solar system; the electrons were analogous to the planets, the nucleus to the 
sun, and the electrostatic force representative of the force of gravity.  This, however, 
posed a serious problem because accelerating electrons (those with a curved trajectory) 
were known to radiate energy by emitting photons.  If electrons were orbiting around the 
nucleus in this fashion then they should quickly lose potential energy and spiral into the 
nucleus, thereby making the atom unstable.  This model, however, obviously needed to 



be modified since orbiting atomic electrons did not appear to radiate photons and, more 
importantly, the atom itself is stable.   

Meanwhile, at the end 19th century,  Max Planck was working on a solution to a 
problem called the “ultraviolet catastrophe”.  Blackbody radiators, theoretical objects that 
completely absorb all wavelengths of thermal radiation and then reradiate the energy, 
were easily modeled at high wavelengths but not at low wavelengths.  Derived from 
classical thermodynamics, the Rayleigh-Jeans law agreed with experimental data at high 
wavelengths but predicted an infinite amount of energy to be radiated at the lower end of 
the spectrum, an obvious impossibility.   

Planck found in 1900 that he could fit the data with an empirical formula.  
However, the only way that he could explain the reasoning behind the function was if he 
made the assumption that the blackbody could only absorb and emit energy in discrete 
packets.  In addition, he found that these quanta were proportional to the frequency of the 
radiation:  

 
E h f⋅           Eq. [1.1] 

 
where h = 6.626 x 10-34 J·s and was given the name Planck’s constant.   

Building on Planck’s postulate, in 1905 Einstein proposed that electromagnetic 
radiation was actually a stream of particles, not a wave.  This idea stemmed from the 
photoelectric effect, in which incident light on a surface ejects electrons from the surface.  
The wave theory of light predicts that the kinetic energy of the scattered electrons will 
depend on the intensity of the radiation.  However, experiments showed that the energy 
of the ejected electrons does not depend on the intensity of the light, only on the 
frequency.  Einstein reasoned that each particle of light, called a photon, is responsible 
for ejecting one electron and that the kinetic energy of the electron directly depends on 
the energy, and hence the frequency according to equation 1, of the incident photon.   

It then followed that in 1913, two years after Rutherford’s discovery of the 
nucleus, Niels Bohr, a student of Rutherford’s, decided to apply Max Planck’s concept of 
quantized energy to electron orbits.  He postulated that electrons could only occupy 
certain discrete energy levels corresponding to specific orbits.  It was possible for an 
electron to get bumped to a higher orbit, by absorbing a photon, but eventually, the 
electron would drop back down to the lowest possible state, reemitting another photon 
whose energy is equivalent to the difference in potential energy of the two orbits in the 
process.  In addition, he asserted that an electron in its lowest orbital energy state should 
be stable.   

While at the time not even Bohr himself really understood why electrons behaved 
this way,  the picture agreed quite well with experimental data.  In particular, an electron 

 2



of an atom was observed to absorb and emit photons at very precise wavelengths 
described by the Rydberg-Ritz formula  

 
 
      Eq. [1.2]

        

1
λ

R Z2
⋅

1

n2
2

1

n1
2

−⎛⎜
⎜⎝

⎞

⎠

⋅=  n1 n2>

where λ is the wavelength of the photon, Z is the the atomic number of the atom, R is the 
Rydberg constant, and n1 and n2 are positive integers.   

It wasn’t until 1924 that Louis de Broglie first proposed an explanation for these 
quantized orbits.  Following the never-ending debate of whether light was made of 
particles or waves, de Broglie applied the wave-particle duality concept to matter.  He 
hypothesized that Einstein’s equation for the energy and momentum of a photon might 
apply also to matter, thereby giving every particle a wavelength.  The equation then 
becomes  

 
       Eq. [1.3] λ

h
p

=  
 

where f is the frequency of the wave, λ is the wavelength, E is the energy, p is the 
momentum, and h is Planck’s constant.  Hence, de Broglie predicted that electrons (and 
all matter) should have wave-like properties.  This, he claimed, could account for the 
stable, non-radiating orbits.  An electron could only occupy an energy state in which a 
standing wave could constructively exist along the distance of the orbital circumference.  
In order for the electron’s wave to not destructively interfere with itself, the electron was 
only allowed to have certain energies.  In addition, this model dictated that there should 
be a lowest energy state of an electron and that it couldn’t spiral into the nucleus because 
this would mean having a lower energy than the state that corresponded to one standing 
wavelength along the orbit.  Experimentally, these energies agreed perfectly with the 
Rydberg-Ritz formula, lending credence to this “matter wave” theory.   

In the following decades, physicists such as Erwin Schrödinger, Werner 
Heisenberg, Wolfgang Pauli, Paul Dirac and Enrico Fermi among others developed the 
theory of Quantum Mechanics, describing the world in terms of wave functions and 
probabilities.  Quantum Theory is based on the premise that everything, matter and 
energy, is granular or quantized in nature.  This concept of a smallest size, a minimum 
energy level, an elementary, fundamental chunk of stuff in nature is also the foundation 
for the Standard Model, the current theory of elementary particles and their interactions.   
 
 
 
 

 3



1.2 The Standard Model 
 
1.2.1 Fundamental Forces 

There are four basic ways that particles interact with each other: 
 

1. The gravitational force 
2. The electromagnetic force 
3. The weak nuclear force 
4. The strong nuclear force 

 
Gravity is the familiar force that pulls things to the surface of the Earth and holds 

the planets in orbit around the sun.  It is an exclusively attractive force between all 
particles that possess mass inversely proportional to the square of the distance.  It is the 
weakest of the four forces, having a coupling constant, the dimensionless measure of the 
relative strength of the force, of ~ 10-39, over 35 orders of magnitude less than any of the 
other forces.  Therefore, the gravitational interaction does not significantly contribute to 
sub-atomic particle interactions.  However, since the gravity has an infinite range and is 
only attractive, when a bodies mass becomes great enough this force is eventually seen 
on a macroscopic scale.  Again, the sun and planets are excellent examples.  In addition, 
it is the only force that is not incorporated as a part of the standard model.   

The electromagnetic force accounts for the rest of the macroscopic forces 
encountered in everyday life such as friction, contact forces, and magnets.  While these 
examples are complex manifestations of the electric force, at the atomic level it is 
simpler; like charges repel, opposite charges attract.  The electric coupling constant is ~ 
1/137 and its range is infinite.  This force is not the dominant force on a macroscopic 
scale because most matter has approximately an equal number of positive and negative 
charges and is electrically neutral.   

The weak nuclear force is responsible for β-decay, when a neutron decays into a 
proton, electron, and antineutrino.  Its coupling constant is ~ 10-6 but is mediated by very 
massive particles which have a lifetimes on the order of 10-27 seconds, giving the weak 
force a range of ~ 10-3 fm.1  At energies significantly higher than 100 GeV, the weak 
force and the electromagnetic force unify and show themselves to be different 
manifestations of one interaction, the electroweak interaction.2    

The strong nuclear force is what bind the nucleons together inside a nucleus.  The 
strong interaction has the largest coupling constant at ~ 1 and is a unique force for two 
reasons.  First, in stark contrast to the electromagnetic force, it has three different charges 
instead of one.  Secondly, it is a non-Abelian, meaning the mediating particles also carry 
charge and can therefore interact with each other.  As a result of these two properties, the 

 4



strong force actually nullifies itself beyond a range of about 1 fm, comparable to the 
diameter of a nucleon. 1   
 
1.2.2 Proliferation of Particles 

Prior to the 1930’s, protons and electrons were thought to be the elementary 
particles of which everything is made.  Then, in 1932, both the neutron and positron were 
discovered.  The neutron was very similar to the proton except that it had no electric 
charge.  It was also found to accompany protons within the atomic nucleus.  The positron 
is essentially identical to the electron except it has positive, instead of negative, charge.  
This confirmed the existence of anti-matter, which was comforting to the physics 
community for two reasons.  The first is that Dirac predicted anti-matter in 1927 in an 
attempt to explain negative energy solutions to the Schrödinger equation, which is the 
basis for Quantum Mechanics.  Secondly, physicists always hope for and strive towards 
finding symmetry in nature as a general rule.  The 1940’s led to the discovery of the 
muon (µ), a particle nearly identical to the electron except that it is nearly 200 times more 
massive, and the pi meson (π), or pion, a particle with an intermediate mass between the 
proton and electron.  This trend of discovering new seemingly “elementary” particles 
continued for decades and, in fact, new particles are still being discovered today.2   

Particle physics experiments over the past 50 years have found hundreds of sub-
atomic particles to exist in addition to the proton, neutron and electron.  So many were 
found, and with such apparent systematic order, that physicists were forced to the 
realization that they were not discovering increasingly more truly fundamental particles.  
A particle substructure seemed imminent.  Murray Gell-Mann and George Zweig 
predicted in 1963 a model of quarks (named after a James Joyce quotation) providing 
underlying structure to two particular classifications of particles, baryons and mesons, 
which was confirmed in 1969.  Current theory holds that all matter is made from only 
two families of fundamental particles: quarks and leptons.1   
 
1.2.3 Classification and Characteristics of Particles 

The Pauli exclusion principle states that no two particles of matter with anti-
symmetric wave functions can exist in exactly the same energy quantum state.  This 
essentially refers to the common sense notion that no two identical particles can be in 
exactly the same place at exactly the same time (although at the sub-atomic level, the 
argument is a bit more subtle).  Particles that obey the Pauli exclusion principle are called 
fermions.  All fermions are also characterized by odd half-integer spins (1/2, 3/2, 5/2, …).  
Particles that do not obey the Pauli exclusion principle are called bosons.  Bosons have 
either zero or integer spin.  All particles existing in nature are either fermions or bosons.2   

Sub-atomic particles are also classified by the interactions in which they 
participate.  One such distinction is the hadron, a particle that experiences the strong 

 5



nuclear force.  All hadrons are composite particles made of quarks (more on quarks later).  
There are two types, baryons and mesons.  Baryons are fermions that are bound three-
quark states.  The proton and neutron (collectively referred to as nucleons) are the 
“lowest lying” or least massive baryons in a spectrum of over 100 particles.  The proton 
is the only stable baryon.1   

Mesons are bosons that consist of quark/anti-quark pairs.  They are bosons and 
therefore have either zero or integral spin.  All mesons are quickly decaying particles, the 
longest living being the pion with a decay time of ~ 0.26 ns.3   

 
1.2.4 Truly Fundamental Particles?? 

All fermions, and therefore all matter, are made out of either quarks or leptons.  
The current standard model theorizes that these are truly elementary, having no internal 
substructure.  While the pattern throughout history has been for nature to consistently 
reveal ever smaller constituent parts to what scientists believe are fundamental particles, 
current theory still maintains that quarks and leptons are probably the elementary quanta 
of nature.1  The hierarchy of fundamental particles is shown in Figure 1.1 and some of 
their properties are shown in Table 1.1.     

 

 
Figure 1.1 

Not all of the baryons and mesons are listed.   
 
There are a total of 12 known leptons, 6 particles paired with their anti-particles.  

They can be divided into 3 families or generations.  The electron (e) and electron neutrino 

 6



(υe), the muon (µ) and the muon neutrino (υµ), and the tau (τ) and tau neutrino (υτ).  The 
electron, muon and tau are essentially identical particles except that they are increasingly 
more massive.  Therefore, the muon always decays into an electron and neutrino/anti-
neutrino pair, while the tau has enough mass to have nearly a dozen different decay 
channels.4   

 
 

Quarks    Leptons   
 mass (MeV/c2) charge (e)   mass (MeV/c2) charge (e) 

up ~ 400  2/3  e 0.511 -1 

down ~ 700 - 1/3  υe < 1.6 x 10-5 0 
             

charm ~ 1500  2/3  µ 106 -1 
strange ~ 150 - 1/3  υµ <  0.3 0 

             

top ~ 1.74 x 105  2/3  τ 1780 -1 
bottom ~ 4700 - 1/3  υτ < 40 0 

 
Table 1.1  

 
Leptons are not baryons and, consequently, do not interact via the strong nuclear 

force.  The neutrinos are all electrically neutral, but the e, µ, and τ all carry charge -1e (or 
+1e if they are anti-particles).  The primary interaction mechanism is the electromagnetic 
force.  Since neutrinos are electrically neutral, they interact extremely infrequently with 
other matter (neutrinos regularly pass unaffected straight though the Earth; scientists can 
only measure them rarely and with great difficulty).2   

Quarks are also organized in a way that parallels the leptons.  Twelve total quarks, 
6 particles and their anti-particles are arranged into 3 families.  They are given arbitrary 
names; the 1st family consists of an up quark and down quark, the 2nd of a charm and a 
strange quark, and the 3rd of a top and a bottom quark.  The up, charm, and top quarks 
have electric charge (2/3)e and the down, strange, and bottom all have electric charge (-
1/3)e.  The families appear to have identical particle properties except for their increasing 
masses.2   

Where the families of both quarks and leptons differ is in their decay channels.  
While all decaying particles conserve things like mass/energy, electric charge, 
momentum and angular momentum, they also conserve quantities called lepton numbers 
(L) and baryon numbers (B).2   

 7



Every lepton in a given family has an associated lepton number.  In the 1st family, 
e and υe both have Le; in the 2nd family, µ and υµ both have Lµ; in the 3rd family, τ and υτ 
both have Lτ.  The corresponding antiparticles are identical in all ways except for a 
reversal of sign in the Lepton numbers and electric charge.  This is an example of an 
allowed decay (the line above the υe signifies an anti-particle):  

 
µ⇒ e νe

⎯
+ νµ+   

 
The quarks have a simpler system for determining baryon numbers.  Each quark 

carries B of 1/3.  However, to complicate the quark scheme, quarks also conserve 6 
properties (in strong nuclear interactions): up-ness, down-ness strangeness, charm, top-
ness and bottom-ness.  The up quark has a up-ness of 1, the down quark has a down-ness 
of 1, the strange quark has a strangeness of –1, the charm quark has a charm of 1, the top 
quark has a top-ness of 1 and the bottom quark has a bottom-ness of 1.  The anti-quarks 
all have a sign reversal of these and baryon number from their associated quark.2   

The Pauli exclusion principle states that no two particles can be in the same 
quantum state.  However, this is exactly what seems to happen with, for instance, the ∆++ 
particle which consists of three identical up quarks, all in the same state.  This particle is 
observed in nature but cannot, within the framework presented thus far, be consistent 
with Pauli’s exclusion principle.2   

As mentioned earlier, quarks have three different kinds of charge associated with 
them.  These charges are labeled red, green and blue.  Anti-quarks are labeled anti-red, 
anti-green, and anti-blue.  It is important to realize that these do not refer to actual colors, 
rather they are a merely labels, a convenient way to categorize something that is 
otherwise completely unintuitive.  There are, however, analogies to color that apply to 
these properties of quarks.1   

Isolated quarks has never been found in nature.  Only baryons (3 quark states) and 
mesons (quark/anti-quark states) have been observed.  The presence of quarks has been 
deduced from experiments where nuclei are probed with extremely high-momentum 
particles.  As the incident particles gain more energy, their quantum mechanical 
wavelength decreases (equation 1.3).  In electron-proton scattering with electron energies 
of ~ 4.9 GeV/c2, excited nucleon states were observed, indicating nucleon sub-structure.  
In addition, deep inelastic scattering experiments were performed on nuclei that showed 
analogous results to Rutherford’s gold-foil experiment on atoms.  Deep inelastic 
scattering refers to colliding electrons or protons with nucleons using enough energy to 
penetrate deep into the nucleon (anywhere between 20 and 400 GeV, depending on the 
experiment).  Nearly identical arguments to Rutherford’s can be made from these data 
supporting the case for composite systems made built of three quarks.1   

 8



In order to describe why lone quarks are never observed (and also to maintain 
consistency with the Pauli exclusion principle) physicists have introduced this new 
property, color.  Then, quarks are only able to exist in colorless (white) combinations.  
Therefore, there are a limited number of groupings that can occur: equal mixture of red, 
green, and blue (R-G-B), equal mixture of anti-red, anti-green, and anti-blue (aR-aG-aB) 
or equal mixture of color and anti-color (R-aR, G-aG, B-aB).  This explanation is 
consistent with Pauli’s exclusion principle since, in the above example, the three up 
quarks are not identical but are red, blue, and green instead.  The color concept also has 
very profound implications for how quarks interact with each other.1   

 
1.2.5 Other Fundamental Particles… 

While all matter is made of quarks and leptons, there is another classification of 
fundamental particle called the gauge boson.  As the name implies, they are bosons, but 
more specifically, they are particles that mediate interactions.  The standard model holds 
that there must be carrier particles for all interactions that must be associated with 
quantum excitations of the field of some interaction.  Photons are the particles that 
mediate the electromagnetic interaction, the W± and Z0 bosons facilitate the weak nuclear 
interaction, and gluons mediate the strong nuclear force.2   

Photons have exactly zero mass and therefore, according to special relativity, 
travel at the ‘speed of light’ or c ~ 3 x 108 m/s.  One consequence of this is that photons 
never decay and subsequently have an infinite range.  The W± and Z0 bosons are both 
very massive particles (79.8 and 91.2 GeV/c2, respectively) and so their lifetimes are very 
short, on the order of ~ 10-27 s, corresponding to a range of ~ 10-3 fm for the weak 
interaction.1   

As mentioned above, gluons differ from the other gauge bosons in two ways: they 
have eight charges and they conform to a non-Abelian gauge theory.  According to SU3 
theory, since there are three kinds of quarks (red, green, blue) there are eight types of bi-
colored gluons.  Each gluon must consist of a color and an anti-color because gluons 
actually exchange color between quarks.  In addition, every gluon carries a color charge 
also, meaning the gluons interact with each other.  These two special properties make the 
strong force nearly impossible to conceptualize, however, they result in interesting 
measurable results.1   

This non-Abelian gauge theory of gluons explains why isolated quarks have never 
been found.  If a quark is pulled from a hadron, the field lines of the strong force don’t 
spread out and get weaker with distance like electromagnetic charges.  Because the 
gluons interact with each other, the field lines actually condense and get squeezed into a 
tube-like region (see figure 1.2).  The energy that it takes to separate them increases 
linearly as a function of distance, meaning that it would take an infinite amount of energy 
to completely separate two quarks.1   

 9



 

 
 

Figure 1.2 
The quark/anti-quark color field with V(r) ~ r (a), and the e+e- coulomb 

field with V(r) ~ 1/r (b).1   
 
The consequence of this is, in fact, observed.  As a quark is pulled away from 

another quark, the potential energy increases until there is enough energy in the system to 
create a quark/anti-quark pair.  When this happens one of the newly created quarks joins 
the original hadron, taking the place of the departed quark while the other created quark 
pairs with the departed quark to form a new meson.  In this way, solitary quarks cannot 
exist in nature and anytime an attempt is made to isolate one, more hadrons are 
produced.1   

The other interesting feature of the strong force is that even though it is 
theoretically infinite in range (gluons are massless), hadrons do not interact with each 
other via the strong force beyond a range of ~ 1 fm.  This is because gluons carry charge 
and cannot travel very far outside the hadron until they get pulled back into the hadron by 
the strong force.  In comparison, photons do not carry electric charge and, therefore, have 
nothing stopping them from flying away from an electron, thus giving the electric force 
an infinite range.1   

Hadrons do, however, stick together via the strong force.  The strong force can 
also be conducted by mesons (quark/anti-quark pairs).  Mesons can, in a sense, house 
gluons within them and conduct the strong force for a short distance.  It is interesting to 
note that the lowest-lying meson is the pion (~ 140 GeV/c2).  Governed by the 
Heisenberg uncertainty principle, a virtual particle can travel  

 10



 
       Eq. [1.4] ∆x≈

hbar
m c⋅

 

 
before it is reabsorbed back into the vacuum.  Substituting in the mass of the pion, the 
distance that a pion could conduct the strong force between hadrons is ~ 1 fm, which is 
exactly what is observed.  When mesons conduct the strong force it is generally referred 
to as the residual strong force.1 

 

 11



2. Experimental High Energy Physics  
 
2.1 Introduction  

 
2.1.1 Basics 

Elementary particles are inherently undetectable to any of a person’s senses.  
Alone, they can’t be seen, felt, smelled, tasted, or heard.  Obviously, scientists need ways 
to detect these particles in order to study them.  Fortunately, as outlined in the previous 
sections, every particle possesses specific properties and participates in particular 
interactions that make them distinguishable.   

In order to study these sub-microscopic particles, scientists build machines called 
accelerators that accelerate and then collide particles.  When particles are smashed 
together their energies combine and a multitude of particles are produced, spraying out 
from the collision point, the location where the particles collide.  The collision point is 
then surrounded by an array of detectors, typically in a cylindrical configuration that 
measure the momenta, positions, and electric charges of the produced particles.4   

In high energy physics, scientists need to reach minimum particle beam energies 
on the order of ~ 1 GeV or ~ 1.603 x 10-10 Joules.  One electron volt is the amount of 
energy given to an electron that has been accelerated across a potential difference of 1 
volt.  According to equation 2.5, this corresponds to a spatial resolution of ~ 1 fm, about 
the size of a nucleon.1   

There are two main types of configurations for accelerators: linear (linacs) and 
circular (synchrotrons).  Linear accelerators consist of a series of accelerating tubes laid 
out in a straight line.  Each pair of accelerating tubes has oppositely charged potentials 
that accelerate charged particles located in between them.  The tubes are controlled by a 
generator that pulses the potentials at an extremely high frequency.  The frequency is 
carefully set so that the particles ride a “wave” of acceleration until the end of the linac 
where they are finally slammed into the target particles.5   

In addition, the beam particles need to be focused along the length of the linac by 
magnetic fields to make sure that the particles don’t stray from a linear course.  Linacs 
cannot produce a continuous beam of particles; they can only accelerate them in bunches 
or packets.  The final energy of the accelerated particles is essentially determined by: 

 
     Eq. [2.1] E n Z⋅ e⋅ U⋅=

 
where n is the number of accelerating tubes, Ze is the charge of the particle, and U is the 
potential difference between the tubes.5   

 12



The largest linac in the world at this time is the Stanford Linear Accelerator 
Center (SLAC).  It is ~ 3 km long and contains ~ 105 accelerating stages resulting in 
energies of ~ 50 GeV.5   

Synchrotrons are circular accelerators that are similar in concept to the linacs but 
are more sophisticated.  The beam particles repeatedly pass through the same accelerating 
tubes and are focused by a magnetic field to have a circular path.  The generator 
frequency, ω, and the focusing magnetic field, B, must synchronously adjust to the 
momentum of the beam particles in order to keep the particles in a circular orbit in the 
following way:  

 
       Eq. [2.2] ω n

c
r
⋅ β⋅=  

 
 
        Eq. [2.3] B

p
Z e⋅ r⋅

=  
 

where n is a positive integer and r is the radius of the beam orbit.5   
In addition, whenever a charged particle is radially accelerated it loses energy by 

photon emission called synchrotron radiation.  This energy loss must be compensated for 
by the accelerating stages and is found to be  

 
  Eq. [2.4] γ

E
∆E−

4 π⋅ α⋅ hbar⋅ c⋅

3 r⋅
β

3
⋅ γ

4
⋅=  

m c2
⋅

=  where
 
 

where α is the electromagnetic coupling constant and β is the velocity of the particle 
divided by the speed of light.  For highly relativistic particles (β ≈ 1), the mass 
dependence of the energy loss is inversely proportional to the mass of the particle to the 
fourth power.  The energy loss rate for electrons is ~ 1013 times higher than it is for 
protons, making synchrotrons more suitable for experiments involving accelerated 
nucleons than electrons.6   

Synchrotrons are usually built to collide two beams head on.  This is done by 
accelerating the beams in opposite directions giving them counter-rotating orbits.  Then, 
when the desired beam energies are reached, the beams are deflected to collide with one 
another.  At Brookhaven National Laboratories, the Relativistic Heavy Ion Collider 
(RHIC) is an example of a synchrotron.  RHIC collides gold nuclei at energies of about 
100 GeV per Au nucleon.  While this amount of energy is enough to recreate conditions 
that existed less than 10-32 seconds after the Big Bang and reach temperatures nearly 105 
times hotter than the center of the sun, in macroscopic terms it is about the amount of 
energy of a fly landing a wall (wow!).7   

 

 13



2.1.2 Resolution 
According to Heisenberg’s Uncertainty Principle, the spatial resolution of the 

probing particle is determined by 5 

 
 
       Eq. [2.5] ∆x≈

hbar c⋅

E
 

 
Therefore, higher collision energies lead to a deeper probe of the colliding 

particles.  The center of mass energy determines the amount of available energy in the 
collision.  In order to investigate matter at its most fundamental level, it is preferential to 
maximize Ecm.  The center of mass energy of the collision in a linear accelerator is 

 
    Eq. [2.6] Ecm 2 Ea⋅ mb⋅ c2

⋅ ma
2 mb

2
+⎛

⎝
⎞
⎠ c4
⋅+=  

 
 

where Ea and ma are the energy and mass of the incident particle, respectively, and mb is 
the mass of the target particle.  In high energy experiments where the masses of the 
particles are negligible compared to the energies this can be approximated by 4

 
      Eq. [2.7] Ecm 2 Ea⋅ mb⋅ c2

⋅=  

 
The available energy in the center of mass frame scales as the square root of the 

beam energy.  For this reason, particularly for hadronic collisions, synchrotrons tend to 
be more preferable than linear accelerators.  Since there are two beams colliding in 
synchrotrons, the lab frame is the center of mass frame, thereby making the center of 
mass energy a linear function of twice the beam energy.   

 
2.1.3 Coordinate Systems 

In order to describe a particle’s mass and motion there are four pieces of 
information necessary:  

 
In Cartesian – (px, py, pz, E) 
In Spherical – (pradial, θ, φ, E) 
In Cylindrical – (pradial, θ, pz, E) 
 

From these four components, the three dimensional velocity and the mass of the particle 
can be extracted.  The cylindrical nature of the detector suggests a different coordinate 
system than the conventional Cartesian system; the most convenient system is a sort of 
combination of cylindrical and spherical.  The four components are (PT, η, φ, E).   

 14



Defining the z-axis along the beam line, the y-axis along the vertical line, and the 
x-axis horizontal and perpendicular to the beam line, the transverse momentum (PT), 
pseudo-rapidity (η), and azimuthal angle (φ) can determine the location of any particle.  
The transverse momentum is the momentum of the particle which is perpendicular (or 
transverse) to the beam line.  It is the projection of the total momentum onto the x-y 
plane.  The azimuthal angle is the angle around the beam line in the x-y plane.  Finally, 
the pseudo-rapidity (η) is an estimate of the rapidity (Υ) if the particle is traveling close 
to the speed of light.  The rapidity relates to the polar angle, θcm, the angle off the beam 
line in the frame of reference of the center of mass, by  

 
     Eq. [2.8] Υ

1
2

ln
1 β cos θcm( )⋅+

1 β cos θcm( )⋅−

⎛⎜
⎜⎝

⎞

⎠
⋅=  

 
 

Where, again, β is the velocity of the particle divided by the speed of light.  If β ≈ 1 then 
equation 2.8 (after some algebra) can be approximated by  

 
      Eq. [2.9] η ln tan

θcm
2

⎛
⎜
⎝

⎞

⎠

⎛
⎜
⎝

⎞

⎠
−=  

 
Since particles produced in high-energy collisions are essentially moving at the speed of 
light, η is a good approximation for Υ (most of the time).  Figure 2.1 illustrates some of 
these relationships between the Cartesian system and the (PT, η, φ, E) system.   

 

 
Figure 2.1 

Relationships between (px, py, pz, E) and (PT, η, φ, E) coordinate 
systems.8   

 
The advantage to using the coordinate Υ and η instead of θcm is that the Y or η 

distribution (the differences between rapidities) is invariant under Lorentz 
transformations.  When a distribution of η’s is transformed from one frame to another, 
(for instance, the lab frame to the center of mass frame), each individual η is simply 
shifted by some constant.  Particle detectors generally do not measure at |η| larger than ~ 
5, which corresponds to a θcm of less than 1 degree (~ 0.772 degrees).  The dependence of 
η on θcm is shown in figure 2.2:  

 15



 

 
Figure 2.2 

Pseudo-rapidity dependence on θcm.  This relationship is 
nearly linear in the region |η| < 2.5.   

 
These four components (PT, η, φ, E), with E being the total energy of the particle, 

can describe a particles mass and motion through three dimensional space.   
 

2.1.4 Measuring Particles 
Most fundamental particles interact with matter in some measurable way.  The 

primary processes for charged particles and photons is the electromagnetic interaction, in 
particular, inelastic collisions with atomic electrons.  Neutrons, however, are usually 
observed in strong nuclear interactions.6   

When a charged particle passes through matter, there are generally two things that 
occur.  The particle loses energy and it is deflected from its original trajectory.  Different 
types of particles are best detected my different methods.  Therefore, by layering many 
different types of detectors around the collision point, information can be gathered and 
pieced together about the collision event.  A multi-component detector is referred to as an 
experiment.6   

 
 
 

2.2 ATLAS Detector  
The ATLAS (A Toroidal LHC ApparatuS) experiment is an example of a multi-

component detector that is presently being built for use at the Large Hadron Collider 
(LHC) at CERN (European Organization for Nuclear Research) in Geneva, Switzerland.  

 16



The LHC is a synchrotron that accelerates two beams of protons in opposite directions 
around a large (~ 17 mile circumference) circle.  When completed, the LHC will collide 
the proton beams together at an energy of 14 TeV (14 x 1012 eV).  Plans have also been 
set to later collide heavy nuclei (lead, Pb) at energies of up to 1150 TeV.9   

There are four main sub-systems to the ATLAS experiment:  
1. Magnet System  
2. Inner Detector 
3. Calorimeters 
4. Muon Spectrometer 

The ATLAS experiment is an amazing one for both its simplicity and its 
sophistication.  It attempts to measure all types of particles that interact with matter but 
uses a minimal number of sub-detectors.  Some, such as the PHENIX (Pioneering High 
Energy Nuclear Interaction eXperiment) at RHIC, use more than 10 main sub-systems.7  
Figure 2.3 shows a three-dimensional cutout view of the ATLAS experiment:  

 

 
Figure 2.3 

Three-dimensional view of the ATLAS experiment.  Some muon 
chambers and parts of the barrel toroid are removed to show the inner 
structure of the detector.  A person is drawn in the lower center of the 

image to give perspective.10   
 
A high energy particle physics experiment must be capable of measuring particle 

energies, momenta, directions, and charges.  With these properties in hand, a particle’s 
point of origin and mass can be inferred.  Contrary to naïve expectations, not all particles 
that are measured in the detectors originate from the collision point.  Some of the 
measured particles are the decay products (daughter particles) of parent particles with 

 17



very short lifetimes that decay before they hit any of the detectors.  Usually this happens 
within a few millimeters of the collision point.  In addition, any other undetectable 
particles (e.g. neutrinos) can be inferred by conservation laws.4   

In order to accomplish all of these measurements, the sub-systems of the 
experiment are layered cylindrically around the beam line.  Different particles leave 
tracks in different parts of the detectors.  A very generalized scheme of which detectors 
measure which particles is shown in figure 2.4:    

 

 
Figure 2.4 

Different particles leave tracks in different detectors.  By studying the 
tracks, scientists can determine what type of particles have passed 

through the experiment.9   
 
By essentially using similar logic to figure 2.4, all of the particles that are created 

in the collision can be recorded and their trajectories can be mapped.  The individual 
detector components are explained in greater detail in the following sections.  Unless 
otherwise stated, all material in sections 2.2.1 – 2.2.3 is referenced from CERN/LHCC 
94-43, 1994.12   

 
2.2.1 Magnet System 

Strong magnetic fields are needed throughout the experiment for two main 
reasons.  First, they make charge determination very easy.  Every charged particle will 
have a curved path in the field.  Positively charged particles bend in one direction, 
negatively charged particles in the other.  The second chief motivation for having 
magnetic fields is for determining the momenta of particles.  Particles with high momenta 
will have less curved trajectories within the field whereas those with low momenta will 
have trajectories that are more heavily influenced by the field and therefore more curved.5   

The layout of the magnet system with respect to the other detector sub-systems is 
shown in figure 2.5:  

 

 18



 
Figure 2.5 

ATLAS experiment: the highlighted grey portions are the magnets.9   
 
  There are three types of superconducting magnets in the ATLAS experiment.  

As shown in figure 2.6, the barrel toroids (red), produce a cylindrical field which curves 
around the beam line, through the openings in the toroids.  There are 8 barrel toroid loops 
assembled radially and symmetrically to the beam axis.  The end-cap toroids (green) 
produce a field around the ends of the detector.  Each end-cap toroid consists of 8 flat 
coils arranged again radially and symmetrically around the beam axis; however, they are 
offset from the barrel toroids by 22.5°.  A interior view of an end-cap toroid is shown in 
figure 2.7.   

 

 
Figure 2.6 

Illustration of the magnet system.  Barrel toroids (red), end-cap toroids 
(green), and solenoids (white) are shown.11   

 
 

 19



 
Figure 2.7 

Interior view of an end-cap toroid.   
 
The solenoid magnets are the white disks in figure 2.6 and produce a field that is 

parallel to the beam line.  This axial magnetic field has a strength of 2 T along the beam 
line.  The force from the solenoids effectively tries to make the collision particles rotate 
around the beam line.  This is different from the toroidal magnets which effectively 
“push” the particles in a direction parallel to the beam line.   

In high energy experiments, most of the particles that are studied are moving with 
velocities close to the speed of light.  With such high velocities, extremely strong 
magnetic fields are necessary to appreciably deflect the particles.  In addition, these fields 
must be held at very precise levels in order to keep track of what a particular particle will 
do.   

 
2.2.2 The Inner Detector 

The inner detector is used to measure the paths or tracks of all charged particles 
within a radius of 115 cm and |z| of 245 cm symmetrically around the beam line (z-axis).  
The configuration of the inner detector with respect to the rest of the experiment is shown 
in figure 2.8.   

 

 20



 
Figure 2.8 

ATLAS experiment: the highlighted central section is the inner 
detector.9   

 
The inner detector consists of three main types of mini-detectors: the silicon pixel 

detectors, the silicon strip detectors, and the transition radiation tracker (TRT).  Figure 
2.9 shows a close-up of the inner detector and identifies its components.   

 

 
Figure 2.9 

The inner detector.9 

 
The sensors closest to the collision point are the pixel detectors and are divided 

into two sub-types.  The barrel pixel detectors consist of two thin layers of silicon that 
wrap around the beam line.  They are positioned at radii of 11.5 and 16.5 cm and have 
lengths along the z axis of 70 and 90 cm, respectively, and are centered on the collision 
point.   

The forward pixel detectors consist of 8 (4 on either end of the barrel pixel 
detectors) flat “donut” shaped layers, perpendicular to the beam line.  The inner radius of 
the forward pixel detectors is 11.5 cm while the outer radius is 21.3 cm and are 
positioned at lengths |z| = 50, 55, 80 and 85 cm from the collision point.   

 21



In both sets of pixel detectors, the silicon layers are segmented into very small 
rectangular regions, called pixels, with dimensions of 50 x 300 µm.  When a charged 
particle strikes a pixel, electrons are released and a signal is measured.  By tracking 
which pixels get “hit”, the tracks of the charged particles can be reconstructed using 
sophisticated computer software.  In total, the inner detector will contain over 140 million 
pixel sensors.   

Pixel detectors provide extremely sensitive track measurements and can 
determine from where a particle originated.  The are sensitive enough to precisely 
determine if a particle was a direct result of the initial collision or if it was a decay 
product of a particle that decayed within (as little as) a few millimeters of the collision 
point.  Unfortunately, they are also extremely expensive, averaging a staggering $4.5 
million per square meter.   

This high level of precision is not as necessary for detectors that are farther away 
from the collision point.  The silicon strip detectors are significantly less expensive at 
about $0.8 million per square meter.  Arranged similarly to the pixel detectors, the strip 
detectors have both barrel layers wrapped around the beam line and forward layers that 
are perpendicular to the beam line at the ends of the barrel layers.  Each layer consists of 
strips of silicon, instead of rectangular pixels, that are either 75 µm or 112.5 µm in width 
and 12 cm in length.  The barrel strips are aligned parallel to the beam line while the 
forward strips are aligned radially.  

Strip detectors can therefore measure the azimuthal angle, φ, of a particle very 
well.  Unfortunately, the sacrifice that strip detectors make for being less expensive is 
that they do not yield much useful information about the pseudo-rapidity, η.  This lack of 
precision is compensated for by combining the information from the pixel detectors with 
the information from the TRT.6   

The transition radiation tracker is comparatively less expensive than even the 
silicon strip detectors but again sacrifices some overall precision.  The TRT consists of 
collections of gas-wire drift tubes (370,000 tubes in total).  These are small (4 mm in 
diameter; similar to a drinking straw) gas filled tubes of various lengths with thin wires 
running down the middle of them.  The wires are set with an electric potential with 
respect to the tube walls.  A mix of polypropylene and polyethylene fibers are packed 
around the tubes and is called the radiator material.   

As charged particles fly though the tubes, they ionize the gas atoms along their 
path through the tube.  While the leftover ions are attracted to the outer tube walls, the 
ionization electrons are attracted to the wire.  The electrons drift toward the wire (hence 
the name drift tubes) with velocities on the order of 50 µm/ns (~ 105 miles/hr) toward the 
wire, resulting in a current on the wire.  In this way, the tubes that the particles traverse 
can be recorded and the particle tracks can be mapped.   

 22



In addition to mapping the tracks, the TRT is also used for electron identification.  
Whenever an electron passes through the radiator material in between the tubes it 
produces transition radiation in the form of X-rays.  It is called transition radiation 
because it is specifically produced when the electron passes from one medium (in this 
case, air) into another with a higher dielectric constant (the radiator material).  In the 
moment that the particle crosses the boundary between the two materials, the charged 
particle’s electric and magnetic fields are changing, thereby resulting in an 
electromagnetic wave.4   

The amount of energy released in the electromagnetic wave (photon) is inversely 
proportional to the mass of the traveling charged particle.  Since electrons are much less 
massive than any other particle, they emit the highest energy photons (in the form of X-
rays).  The resulting X-rays from the electrons are emitted in the general direction of the 
electrons velocity and then also interact with the gas in the drift tubes creating a much 
larger pulse on the wire whenever an electron passes than other heavier particles.  At the 
energies present in ATLAS, electrons (and positrons) are generally the only particles that 
exhibit high enough energy transition radiation to interact with the gas in the straw 
tubes.4   

A typical particle track consists of 3 pixel, 8 strip, and 36 TRT hits.13   
 

2.2.3 Calorimeters 
There are two major calorimeter systems in ATLAS: the hadronic calorimeter 

and the electromagnetic calorimeter.  The placement of the calorimeters with respect to 
the rest of the experiment is shown in figure 2.10:  

 

 
Figure 2.10 

ATLAS experiment: the highlighted green section is the 
electromagnetic calorimeter and the orange section is the hadronic 

calorimeter.9   
 

 23



The electromagnetic calorimeter consists of a series of thin, stainless steel coated 
lead plates called absorbers.  They are accordion shaped (see figure 2.11), with 
thicknesses ranging from 1.2 mm to 1.8 mm depending on their position within the 
detector.  Plates positioned at larger η can be made thinner since particles passing through 
these plates will be less perpendicular to the thickness and, therefore, will pass through 
more lead.  The plates are immersed in liquid argon and are held at a constant positive 
high voltage.  The are spaced about  4 mm apart.   

 

 
Figure 2.11 

Accordion shape of a lead absorber plate.   
 
When an electron enters the calorimeter and the first lead plate, it begins to lose 

energy to a process called bremsstrahlung.  Electrons are slowed down by the field 
produced by atomic nuclei and radiate photons.  Bremsstrahlung radiation is inversely 
proportional to the square of the mass of the particle.  Therefore, electrons are the only 
particles that are light enough to exhibit bremsstrahlung in high energy experiments.  
These photons are then converted into electron – positron pairs in the presence of the 
nuclear field.  This process is called pair production.6   

The result of this sequence of bremsstrahlung leading to pair production leading 
to more bremsstrahlung (and so on) is called an electromagnetic shower.  Eventually, the 
original electron’s energy has been totally dispersed into the electromagnetic shower.  
The electrons and positrons from the shower ionize the liquid argon atoms and the 
resulting ionization electrons are attracted to the voltage on the plates, in a process 
similar to the drift tubes.  This current can then be amplified and measured and is 
proportional to the energy of the incident particle.  In addition, the distance that the 
incident particle travels before its energy is fully drained also lends information about its 
original energy.  Photons originating from the collision can also be identified by the 
electromagnetic calorimeter; they are simply the showers that do not correspond to any 
tracks from the inner detector (photons pass through the inner detector unobserved).  
Their energies can also be calculated.4   

 24



In addition to electrons, all charged particles leave tracks in the electromagnetic 
calorimeter.  Charged particles, such as pions and protons, also leave tracks in the 
electromagnetic calorimeter.  However, due to their much larger masses (~200 times and 
~2000 times the mass of the electron, respectively), these particles have enough energy to 
completely travel through the electromagnetic calorimeter.  A particles energy cannot be 
determined unless it is totally absorbed by the calorimeter.  Therefore, a hadronic 
calorimeter is placed around the electromagnetic calorimeter to measure the energies of 
the hadrons.   

The hadronic calorimeter consists of alternating layers of steel plate absorbers and 
plastic scintillator tiles.  When a hadron enters the scintillator it excites atoms in the 
scintillator.  As the atoms drop back down to their ground state they emit photons.  The 
scintillators are connected to photomultipliers that turn the photons into a measurable 
electric current.5   

The scintillator – photomultiplier combination is a tool that is often used in 
particle physics experiments.  A semi-transparent photocathode is coated with a material 
with a low work function and is placed at the end of the photomultiplier.  When the 
photons strike the surface, electrons are emitted through the photoelectric effect, 
producing a weak current of electrons.  An applied voltage inside the photomultiplier 
creates a potential, which accelerates the photoelectrons and slams them into an dynode 
producing many additional electrons.  This process is repeated many times in the 
photomultiplier creating a cascade-like effect of electrons.  When they reach the end of 
the photomultiplier there are enough electrons to produce a measurable pulse of current.  
Photomultipliers have the ability to amplify the photoelectric current by factors of 
millions.  This process is illustrated in figure 2.12:4  

 

 25



 
Figure 2.12 

Schematic diagram of a photomultiplier tube.  1-15 are the dynodes 
producing the electron cascade, 13 is the anode for the final current, 14 
are electrodes that help to focus the weak photoelectrons and 15 is the 

photocathode.4   
 
The hadronic calorimeter is similar to the electromagnetic calorimeter in concept, 

however, the processes involved are somewhat different.  Hadrons plow through many 
steel absorber plates and lose some of their energy in elastic collisions with the absorber’s 
nuclei.  These collisions produce more lower energy hadrons (that produce more hadrons 
and so on) and a hadronic shower is created.  This shower is then measured by the 
scintillator and photomultiplier.5   

Hadrons usually emerge from the collision in clusters or jets.  The total energy of 
the jet is usually of more interest than the energy of any individual hadron.  Therefore, 
the spatial resolution does not need to be as precise in the hadronic calorimeter as it does 
in the electromagnetic calorimeter.   

Once the energy of the incident particle is known (from the calorimeters) and the 
momentum is known (from the inner detector), the mass can be determined by  

 
     Eq. [2.10] m c2

⋅ E2 p2 c2
⋅−=  

 
 

 26



2.2.4 Muon Spectrometer  
The muon mass is ~ 200 times larger than the electron mass and so does not lose 

an appreciable amount of energy in the electromagnetic calorimeter; particles with less 
mass will be more affected by the electromagnetic forces of the nuclei in the absorbers.  
Also, being leptons, muons do not interact via the strong nuclear force in the hadronic 
calorimeter.  Therefore, they are the only particles (besides neutrinos, which go 
completely undetected) that can survive past the calorimeters and reach the muon 
spectrometer.  The muon has an average lifetime of about 2 µs;16 however, due to its high 
velocity and relativistic effects, it can survive well past the ATLAS detectors.  The muon 
spectrometer is shown in figure 2.13 with respect to the rest of the ATLAS experiment.   

 

 
Figure 2.13 

ATLAS experiment: the highlighted outer blue sections make up the 
muon spectrometer.9   

 
The muon spectrometer is comprised of four variations of drift chambers.  The 

two main types both fall under the category of proportional chambers: monitored drift 
tubes (MDTs) and cathode strip chambers.  Drift chambers refer to detectors that consist 
of gas filled containers subjected to an electric field.  When a charged particle passes 
through the gas, it ionizes gas atoms along its path.  The ionization electrons are then 
attracted to the positive voltage and, as they collect on the anodes, they create current that 
can be measured.  Proportional chambers operate at high enough voltages that the 
ionization electrons have enough momentum on their way to the anode that they cause 
secondary ionization.  The operating voltages, however, are still small enough that the 
measured signal is still proportional to the primary ion pairs.  Both the MDTs and 
cathode strip chambers are precision chambers, meaning that their main purpose is to 
measure the positions of particles.10, 4   

The remaining two sub-systems of the muon spectrometer are the resistive plate 
chambers and the thin gap chambers.  Both of these systems are referred to as triggering 

 27



chambers.  This means that they are not designed to give precise information about the 
location of a particle.  Their primary purpose is to affirm that a particle has passed 
through the detector system, thus ‘triggering’ the other detectors to record measurements.  
This lets the precision chambers know that something of interest has passed and helps to 
reduce background ‘noise’.  The arrangement of the muon spectrometer is shown in 
figures 2.14 and 2.15.10   

The cathode strip chambers are proportional chambers (about 1 m x 0.5 m x 5 
mm) filled with an Ar/CO2/CF4 gas mixture.  The wires inside the chamber run 
perpendicular to the beam line.  When a muon passes through the chamber it ionizes the 
gas atoms and the resulting liberated electrons are measured on the wires.  This yields 
excellent spatial resolution ( < 60 µm) on the axis perpendicular to the wires (i.e. which 
wire the muon passes is well known).  In order to know where on the wire the muon 
passes, however, metallic cathode strips are lined on the inside of the chamber walls 
orthogonal to the wires.  While the ionization electrons are attracted to the wire, the left-
over ions are attracted to the strips.  By measuring the current from the strips, a precise 
measurement of the particles position in the plane that the wires and strips create can be 
obtained. 10   

 

 
Figure 2.14 

Side view of one quadrant of the muon spectrometer.  The collision 
point is in the lower right corner. 10   

 
The configuration of the MDT chambers is shown in Figure 2.15.  The details of 

the MDT system are discussed in the following section.   
 

 28



 
Figure 2.15 

Transverse view of the muon spectrometer. 10   

 29



3. Frascati Work 
The scope of the ATLAS Muon Spectrometer is enormous.  The estimated 

material and industrial costs for the MDT chamber systems alone was estimated in 1995 
to be in excess of $20 million (US).  As of 2004, there are 44 institutions worldwide 
officially participating in the ATLAS Muon Collaboration (excluding Hampshire 
College; they seem to have forgotten about us, officially).  When the MDT chambers are 
installed in the ATLAS detector, they will cover a total of 5485 square meters around the 
collision point, nearly completely enclosing the other detector sub-systems. 10   
 
3.1 System Layout 

Each monitored drift tube is made of aluminum, is 4.0000 ± 0.0005 m in length, 
and has a outer diameter of 2.9988 ± 0.0003 cm.  The thickness of the aluminum tube 
wall is 405 ± 6 µm.  Standard 50.0 ± 0.5 µm tungsten wire is fixed at a tension of 3.432 ± 
0.069 N along the center of the tube.  In order to increase the wire strength it is coated 
with a thin layer of rhenium (3% by weight) which increases the wire’s rupture limit to 
6.080 N, well above the tension of the wire.  This coating also facilitates the handling of 
the wire.  The potential of the wire in relation to the tube wall is set to 3270 V which 
creates the necessary electric field throughout the tube to maximize the linearity of the 
electrons drift path through the tube. 10   

The negatively charged electrons are attracted to the positive potential on the wire 
and the ions that are left behind are attracted to the tube wall.  When the electrons begin 
to drift to the wire they themselves ionize more atoms along their path to the wire.  This 
secondary ionization creates a cascade of additional electrons called the avalanche 
amplification.  The avalanche electrons are also attracted to the wire and, therefore, result 
in a larger measured signal than would be expected.4   

The incoming signal on the wire is amplified and shaped before being sent to the 
discriminator.  The discriminator is set to a threshold that corresponds to the 22nd electron 
after subtracting for the avalanche amplification effect (Figure 3.1). 10   

 

 30



 
Figure 3.1 

The simulated response for an energetic muon.  The dashed line is the 
raw signal without avalanche compensation and the solid line is 

avalanche subtracted.  The solid horizontal line indicates the 
discriminator threshold.  The y-axis is in arbitrary units. 10

 
The MDT’s are constructed on flat granite tables to limit their deformities and 

thereafter monitored by built-in optical systems to keep track of any deformations.  This 
is where the name monitored drift tube originates. 10

The layout of the MDT chambers with respect to the test beam is shown in Figure 
3.2: 

 

 
Figure 3.2 

Test Beam layout at CERN: the positions for the bottom rails are given in cm. 10

 31



 
The Barrel Middle Large (BML) is the middle bank of MDTs in figure 3.2 and is 

divided into two stations (creatively labeled 1 and 2).  Each chamber consists of 2 multi-
layers separated by a support structure.  Each multi-layer is made of three rows of 56 drift 
tubes as illustrated in Figure 3.3.   

 

 
Figure 3.3 

Schematic drawing of an MDT chamber.  Structural components are 
indicated.    

 
Within each multi-layer the tubes are closely spaced so that the height of the 

multi-layer has a thickness of 8.2 cm.   
The MDTs of multi-layer 2 in the BML1 station use a parallel gas distribution 

system.  Every tube of the parallel system has its own input of fresh gas, refreshing the 
entire gas volume once every 12 hours.  Conversely, the MDTs of multi-layer 1 in the 
BML1 and both multi-layers in the BML2 are equipped with serial gas distribution 
systems designed at the Laboratori Nazionali di Frascati.  This system runs the gas 
through three tubes in series before the gas is flushed.  The gas input tubes are 
collectively referred to as tube number 1, the middle tubes as tube number 2, and the 
output tubes as tube 3.  The configuration is shown in Figure 3.4. 10   

 

 32



 
Figure 3.4 

With respect to gas flow, tubes labeled 1 are input tubes, tubes labeled 
2 are middle and tubes 3 are output. 10   

 
 
Each tube has an NORYL-GNF3 plastic end-plug and the three tubes are 

connected by inox gas jumpers or stainless steel tubes.  The entire connector valve 
mechanism also includes a crimped aluminum cylinder and an O-ring seal (shown in 
figure 3.5).  In the serial system the entire gas volume, through tubes 1-3, is also 
completely refreshed once every 12 hours. 10   

 

 
Figure 3.5 

Three-dimensional schematic of the end cap design. 10   

  
The gas used is a mixture of Ar and CO2 (93:7).  The mixture is held at a constant 

pressure of 3 bar and is heated to a minimum of 20°C at all times.14   
The test beam fires clusters of muons with momentum ranging between 20 

and 400 GeV/c toward the MDT chambers.  A scintillator hodoscope trigger is 
located between the beam aperture and the MDT’s.  Using both fast detectors and 

 33



scintillators with very short output pulses, a hodoscope is a combination of 
multiple detector elements that determines when a particle passes through it.  In 
the 2003 muon test beam a hodoscope is used to trigger when the muons are 
coming. 14   

Whenever a muon passes through the hodoscope, the hodoscope sends a signal 
instructing the MDT electronics to expect a signal from the MDT chambers.  The MDT 
electronics are always monitoring the current coming from the MDT wires and storing its 
level in a memory buffer.  The data is only stored in long-term memory whenever the 
hodoscope sends a signal, indicating that a muon is headed for the MDT chambers.  The 
purpose of the triggering is to decrease the number of random signals from cosmic rays 
or other accidental sources. 10   

 
3.2 Objective   

This analysis compared the drift times of MDT’s with parallel gas distribution 
systems to those with serial gas distribution systems.  The 2003 test beam data collected 
from the chambers located in the BML (Barrel Middle Large) were examined.  Previous 
unpublished results suggested that the drift time of the ionized electrons in the MDTs 
varied depending on whether the tube was a gas input tube, a middle tube, or a gas output 
tube.  This analysis was initiated in order to discover whether there is a dependence and, 
if a dependence exists, to understand the cause.   

 
3.3 Methods of Analysis  

One run of data generally last around ten minutes and normally yields between 
2x105 and 3x105 events, resulting in about triple this amount of drift times per multi-layer 
(since there are three layers of tubes per multi-layer), depending on the run.  These drift 
times can be plotted in histograms as shown in Figure 3.6.   

 

 34



 
Figure 3.6 

Histogram of raw MDT time-to-digital-converter counts.  The red line 
is a fit of the data with equation 3.1.   

 
The histograms of the spectra of drift times span a 700 ns range and can be fit 

with the following function:  
 
  
  

   Eq. [3.1] 
ƒ x( ) p1 p2

1 p3 e

x p5−( )−

p4
⋅+

⎡
⎢
⎣

⎤
⎥
⎦

1 e

x p5−( )−

p7
+

⎡
⎢
⎣

⎤
⎥
⎦ 1 e

x p6−( )

p8
+

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=  

 
 
 
 

 

 35



Figure 3.7 
The blue lines indicate what changing the parameter does to the red-

lined function.   
 
 
Equation 3.1 is a combination of three Fermi-Dirac distributions and its 

parameters p5 and p6 describe the edges of the spectra, while p7 and p8 represent the 
resolution of the edges.  Parameter p5, the minimum edge of the spectra, is referred to as 
‘t0’ and p6, the maximum edge of the spectra, as ‘tmax’.  The quantity tdrift is defined as the 
maximum measured time that it takes an ionized electron to drift to the wire and is found 
by taking the difference between t0 and tmax in any given spectra.  Each parameter’s 
specific influence on the fit is shown in Figure 3.7.  While this shape may seem peculiar, 
it is the natural result from a distribution of average drift velocities that is non-linear with 
respect to starting radius (Figure 3.8).  The starting radius is the distance from the wire at 
which any given electron is separated from its atom.   

 

 
Figure 3.8 

GARFIELD simulation of ionization electron drift velocities as a 
function of starting radius within the MDT for tubes with and without 

water contamination.   
 

Integrating the distribution over time leads to a correlation between the starting 
radius of the ionization electron and the actual drift time (Figure 3.9).  A histogram of the 
projection of the drift times (y-axis) leads to the shape that is found for the drift time 
spectra.   

 

 36



 
Figure 3.9 

GARFIELD simulation of drift time as a function of starting radius.  
Blue points are ‘no water’, red points are with 200 ppm water 

contamination.   
 
Due to the complex electronics involved in the triggering system, the trigger 

signal from the hodoscope can potentially actually arrive after (or even sometime before) 
the muons have passed through the drift tube.  Therefore, the drift time cannot be known 
as it would be measured in real-time, only in relative time with respect to the trigger.  
This is acceptable since, in this analysis, the only quantity of interest is tdrift, the longest 
possible time that it might take an electron to reach the wire; tdrift is only dependant on the 
relative difference between t0 and tmax.   

In order to analyze the test beam data a framework was written in C++ using the 
CERN application ROOT as a foundation (Appendix 1).  This framework is divided into 
four distinct macros or scripts.   

 
3.3.1 Macro 1 (fill_ntup_allRuns.C) 

First the raw data trees had to be converted from PAW (Physics Analysis 
Workstation) files to ROOT.  This data is initially sorted by run number.  Macro 1 takes 
the created ROOT data trees and first groups all of the data by multi-layer and tube 
number.  The drift times are represented by channels of the time-to-digital-converter (tdc) 
in the original data trees.  Each channel represents 25/32 ns.  This conversion arises from 
the 11-bit system used in the electronics leading to a total of 211 or 2048 channels.  Since 
the full measurable time range of the particular TDCs that are used is 1600 ns, this 
requires a conversion of  

 37



 
    Eq. [3.2] 

1600
2048

ns
channel

25
32

ns
channel

= 0.78125
ns

channel
=  

 
This conversion from channel to time is accounted for in Macros 2,3,4.    
 After Macro 1 groups the mdttdc channel counts by multi-layer and tube number, 
the histograms are plotted and fit with equation 3.1.  An ntuple is created for each run 
that contains the following variables:  

1) Run number 
2) Multi-layer ID 
3) Tube number 
4) Number of entries  
5) p5 (t0) 

6) p6 (tmax) 

7) p7 (resolution of t0) 

8) p8 (resolution of tmax) 
9) error of p5 
10) error of p6 
11) error of p7 
12) error of p8 
13) χ2 value of fit 
14) tdrift 
15) error of tdrift 

After being filled, each ntuple for each run is saved in a file to be accessed by 
Macros 2, 3 and 4.  This analysis results in a total of 144 tdrift values, 12 for each run.   
 
3.3.2 Macro 2 (ana_mean_allRuns.C), Macro 3 (ana_tdrift_vs_time.C), Macro 
4 (ana_subtract_tdrift_vs_time.C) 

Macros 2, 3 and 4 all share a common calibration section.  First, only data from 
runs where the signal to noise ratio was greater than 15 was used.  The drift time values 
from the mdttdc count fits are stored in the ntuples from Macro 1 in units of channel 
number instead of ns.  This conversion is shown in equation 3.2.  In addition to this 
channel-to-time calibration, there is a temperature calibration.  While the temperature of 
the drift tubes is kept above 20°C, it is not stringently controlled beyond this.  In fact, the 
temperature of the system ranges between 23°C and 30°C for all of the analyzed runs; 
however, the duration of the runs are not long enough for the temperature to change 
significantly throughout any given run.  In the 2001 test beam, G Avolio et al found that 
the drift time varies with the temperature of the system.  Using 27°C as the reference 
temperature, tdrift varies as  
 
       Eq. [3.3] ∆tdrift

2.4ns
°C

T 27°C−( )⋅=

 38



 
Taking both of these calibrations into account, the tdrifts can be further analyzed.  [15] 

Macro 2 plots tdrift vs tube number for each run and multi-layer and prints these 
values to the screen.  The plots from Run 1226 are shown in Figure 3.10 as an example.  
There is a clear dependence of tdrift on tube number for the multi-layers with serial gas 
distribution systems.  The parallel system shows no such distinguishable dependence.  
This clearly indicates that the conditions inside of the MDTs are changing from one tube 
to the next in the serial system and not in the parallel system.   

 

 
Figure 3.10 

The experimental tdrift as a function of tube number.  The lower right 
plot is the parallel gas distribution system, the remaining three plots are 

serial.   
 
Each run number is associated with a date and time (Table 3.1).   
 
 
 
 
 

 39



Run nEntries 
temp 

(bml1) 
temp 

(bml2) start time stop time hour date 
                

700032 120k 23.81 24.17 7:46 8:18 4 19/7/2003
700090 160k 24.86 25.23 9:38 10:04 30 20/7/2003
700108 100k 26.88 26.77 13:55 14:08 34 20/7/2003
700172 120k 26.92 26.9 3:20 3:58 47 21/7/2003
1091 200k 27.6 27.42 0:07 0:56 428 6/8/2003
1222 280k 28.83 28.65 18:43 19:34 495 8/8/2003
1226 280k 28.18 28.06 22:41 22:37 499 8/8/2003
1235 200k 25.33 25.72 7:28 8:11 508 9/8/2003
1256 280k 26.07 26.37 10:44 11:38 535 10/8/2003
1374 240k 25.31 25.57 3:58 5:02 672 16/8/2003
1431 280k 26.02 26.17 1:30 2:36 694 17/8/2003
1559 280k 26.76 26.54 21:20 ??? 833 22/8/2003

 
Table 3.1 

 
Therefore, a global time can be applied.  Treating 4:00 am on July 19, 2003 as 

reference time, each run has an associated hour enabling a plot of tdrift as a function of 
time.  A concern was that tdrift or the change in tdrift (∆tdrift) between each tube was varying 
with time.  Macro 3 calibrates the data and then plots tdrift for each type of tube as a 
function of time separately for each multilayer (example shown in Figure  3.11).   
 

 40



 
Figure 3.11 

The experimental tdrift plotted as a function of time.  Each tube number 
and multi-layer was plotted separately.   

 
The data was fit to both a flat line (zero slope) and a 1st order polynomial (a 

sloped line).  There was no appreciable difference in the error of the fit.  The ratio of the 
χ2 value divided by the number of degrees (NDF) of freedom of a 1st degree polynomial 
to a flat line, summed over all the multi-layers and tubes and averaged is essentially one:  

 
 
 
    Eq. [3.4] 

multilayers tubes

χpol_1
2

NDFpol_1

NDFpol_0

χpol_0
2

⋅

⎛⎜
⎜
⎜⎝

⎞
⎟
⎠

∑∑
12

0.99=  
 

 
Clearly, tdrift does not appear to change over time.   

Macro 4 does a similar analysis.  This macro looks at ∆tdrift from one tube to the 
next as a function of time for each multi-layer and each type of tube and plots them 
(example shown in Figure 3.12).   

 

 41



 
Figure 3.12  

Experimental tdrift plotted as a function of time for each mutli-layer and 
each tube.  The black horizontal lines are simply to reference the zero 

line.   
 
Again, after fitting these plots, ∆tdrift does not appear to vary over time.  These 

plots do reveal, however, an average ∆tdrift of the serial system between tubes 1 and 2 as 
well as between tubes 2 and 3 that is very markedly different than the ∆tdrifts of the 
parallel system.  The ∆tdrift values between any two consecutive tubes (∆tdrift of tubes 2-1 
and ∆tdrift of tubes 3-2) are then averaged.  The average ∆tdrift of the serial system was 
found to be 1.90 ± 0.22 ns/tube while for the parallel system it was 0.82 ± 0.79 ns/tube.  
(final_data.xls – sheet5) 

 
3.4 Hypothesis 

One might naïvely expect that in the serial system the gas will become 
increasingly more polluted as it passes through each tube, thereby affecting the measured 
drift time.  In both the serial and parallel systems, the entire gas volume is completely 
refreshed once every 12 hours.  This is well within the gas purity limits which dictate that 
the gas be refreshed once every 24 hours.   

The MDTs are identical and the gas entering the system is the same in both 
systems.  From a gas particle’s point of view, the only difference between the systems is 

 42



traveling thought the end-plug/valve mechanism that connect one tube to the next.  
Therefore, in order to explain the discrepancy of the serial system, it was proposed that 
water may be leaking into the gas through the plastic end-plugs.  Since, as simulations 
show, a more humid gas medium would result in the electron having a lower drift 
velocity, this could potentially account for the drift time discrepancy.   

This hypothesis has a few obvious ramifications.  First, since the additional water 
is only leaking in between tubes, the humidity levels would be constant in any given tube.  
The gas flows at a steady rate so that the more humid gas would be unable to propagate 
backwards through the serial system. Soon after the gas starts to flow, the humidity in 
every part of the system will reach some equilibrium, leading to a constant tdrift within 
each tube.  Second, the difference in humidity levels should be the same between tubes 1 
and 2 as it is between tubes 2 and 3.  This would result in ∆tdrift(2-1) also being the same 
as ∆tdrift(3-2).  Moreover, this difference should be constant over time.   

In order to examine this hypothesis, Monte Carlo (random) muon events were 
simulated using two computer applications, ROOT and GARFIELD, focusing 
specifically on the drifting electrons within the tubes.  Preliminary simulations in 
coordination with experimental data should lead to a correction factor for the humidity 
levels.  Subsequent, more detailed simulations can then predict actual mdttdc count 
spectra which can be analyzed with the ROOT framework to compare with the 
experimental results.   

Unfortunately, this is the only feasible way to examine this hypothesis at this 
time.  The drift chambers are already built and, therefore, cannot be easily retrofitted with 
humidity sensors.  In addition, the amount of water in question is very small (< 100 ppm).  
Extracting the used gas from the system without introducing some additional 
contamination would be extremely difficult.  This resulting contamination could easily 
spoil any subsequent humidity measurements.  Both of these procedures would also be 
very costly.   
 
3.5 Simulations  

GARFIELD is program that simulates drift chamber mechanics and can calculate 
things like electron and ion drift lines, average drift velocities, electron avalanche 
amplifications, and field maps within the chambers among many other things [11].  With 
GARFIELD, Fabio Cerrutti (a LNF employee stationed at CERN) calculated average 
drift velocities with respect to different starting radii within the tube (Figure 3.13) for gas 
with no water as well as a humidity level of 200 ppm.   

 

 43



 
Figure 3.13 

GARFIELD simulations of ionization electron drift velocity as a 
function of starting radius.  Polynomial fits are also shown.   

 
Integrating this graph reveals a relation between drift time and starting radius 

(Figure 3.14).   
 

 
Figure 3.14 

GARFIELD simulations of ionization electron drift times as a function 
of starting radius, 4th degree polynomial fits are shown.   

 44



 
This relation was fit phenomenologically with Mathcad with a 4th degree 

polynomial (anything less than a 4th degree revealed lousy residuals, Figure 3.15).  The 
resulting function supplied a mechanism to translate any given starting radius to a drift 
time.   

 

 
Figure 3.15 

Residual plots of the 2nd, 3rd, and 4th degree polynomial fits of 
ionization electron drift time vs starting radius.   

 
In order to simulate the proper distributions of electrons and propagate these 

distributions to mdttdc count spectra, a series of macros were written in ROOT 
(Appendix B).   

In the ROOT simulations, intuition would indicate that the proper distribution of 
electrons that would correspond to a uniform distribution of muons is a circular or 
possibly even a cylindrical distribution since this is the shape of the MDT.  However, this 
is a naïve misconception.  Even thought there are many ionization electrons left in the 
wake of the muon, there is only one drift time per muon track measured in any given 
tube.  This is due to the front-end electronics of the system.  As the electrons gather on 
the wire, they create a measurable current.  The discriminator only records a drift time 
when the current reaches some threshold value.  Figure 3.16 shows the measured current 
as a function of time for a simulated track.  The drift time is only measured when current 
begins which corresponds to when the first (or very nearly first) electron hits the wire.   

 

 45



 
Figure 3.16 

Simulation of measured current as a function of time for a muon track.  
The avalanche effect has been subtracted.   

 
The muon that leaves the track is moving at nearly the speed of light and, 

therefore, the wake of electrons appears, for our simulation purposes, instantly.  
Therefore, the electrons that will reach the wire first are the ones with the shortest 
distance to travel.  The leading electrons will always lie on the line which is 
perpendicular to both the muon’s path and to the length of the tube (Figure 3.17).  This 
means that the proper distribution of electrons to simulate is a linear one along this line.   

 
 

 
Figure 3.17 

Cross section of monitored drift tube: the electrons distributed along 
the yellow line will always have the shortest distance to travel to the 

wire, thus they are the ones to simulate.   
 

 46



A random ‘jiggle’ was added to each simulated drift time that was based on a 
linear extrapolation of the resolutions of t0 and tmax found from the experimental data.  In 
addition, an appropriate amount of random white noise was also added to the spectra.   

The fitted function from Figure 3.14 above was used to convert this linear 
distribution of electrons into drift times.  Since the GARFIELD data only had data for no 
water and 200 ppm, it was necessary to develop a technique to simulate any amount of 
water.  The differences in the two fit functions (no water and 200 ppm) are relatively 
small.  Therefore, assuming a linear parameter dependence between the ‘no water’ fit and 
the 200 ppm fit, the parameters for any amount of water less then 200 ppm could be 
derived.   

Assuming a linear dependence of ∆tdrift on humidity level, Figure 3.14 leads to a 
correction factor of 6.45 ns/100ppm.  The experimental ∆tdrift was found to be 1.90 ± 0.22 
ns/tube corresponding to a humidity level of 29.87 ± 1.70 ppm/end-plug leaking into the 
system between tubes.   

ROOT simulations of the mdttdc spectra were run from zero to 180 ppm in 30 
ppm increments, primarily to verify the linear correlation between ∆tdrift and humidity 
level.  The results are shown in Figure 3.18 and do indeed confirm a linear dependence.   

 

 
Figure 3.18 

Monte Carlo simulations of ∆tdrift for various amounts of water ranging 
from 0 ppm to 200 ppm, illustrating a linear dependence.   

 
Finally, in order to explore a simulated humidity increase of 29.87 ± 1.70 

ppm/end-plug, the ROOT simulation was run at 0, 30 and 60 ppm.  The analysis from 
macros 2, 3 and 4 was then performed to on these data.  These simulations predict a ∆tdrift 

 47



of 2.10 ± 0.09 ns/tube, in perfect agreement with the experimental value of 1.90 ± 0.22 
ns/tube.   
 
3.6 Conclusions 

A systematic analysis of the serial gas distribution system revealed that tdrift is 
constant with respect to time for any particular type of tube (input, middle,output) and, 
therefore, ∆tdrift is also constant between any two consecutive tubes.  In addition, 
∆tdrift(tubes 1-2) and ∆tdrift(tubes 2-3) are equal indicating that there is something 
happening between every tube that is affecting the electron drift time.  Specifically, 
something is increasing tdrift by 1.90 ± 0.22 ns/tube.   

According to equation 3.5, the experimentally measured value of ∆tdrift 
corresponds to a humidity influx leakage rate or water flow (WFexp) of 0.221 ± 0.013 
(mbar/day)/tube.   

 
      Eq. [3.5] WFexp

P w⋅ V⋅
trefresh

=  

 
where P is the air pressure inside the tube, w is the amount of water in ppm, V is the 
volume of one tube, and trefresh is the time to refresh the total volume of gas.   

A theoretical water flow (WFtheory) was computed using the permeability constant 
of NORYL-GFN3 of  

 
   at 25°C,15   Pw 2.6cm3 cm

cm2 day⋅

⎛
⎜
⎝

⎞

⎠
⋅=  

 
 

the difference in partial pressures inside and outside the tube (∆P), the surface of the end-
plug exposed to the gas (S) and the average end-plug length between tubes (L):  
 
      Eq. [3.6] WFtheory Pw

S
L
⋅ ∆P⋅=  

 
Assuming an outside humidity of 60% and using the average temperature of all the runs 
(25°C), WFtheory was estimated to be ~ 0.194 (mbar/day)/end-plug.  This is in close 
agreement with WFexp of 0.221 ± 0.013 (mbar/day)/tube.   

Therefore, the steady increase in tdrift in consecutive tubes can be quantitatively 
explained by water contamination through the end-plugs; there is a build up of water 
vapor in the gas mixture during the its flow through the series of tubes.  This hypothesis 
is further supported by the water conduction rate of the NORYL-GFN3 end-plugs.   

Surprisingly, the ∆tdrift/tube for the parallel system was 0.82 ± 0.79 ns/tube, not 
exactly zero.  In theory, these tubes should all record the same drift times.  However, 
while one standard deviation is slightly higher than zero (~ 0.03 ns/tube), two deviations 

 48



are clearly in agreement with zero.  In addition, the statistics in BML1, multi-layer 2 were 
not as favorable as the other multi-layers due to its configuration with respect to the test 
beam line (refer to Figure 3.2).  BML1, multi-layer 2 recorded, on average about ¼ less 
events than the either of the multi-layers from BML2.  While this could have adversely 
affected the results from the parallel system, there are still enough recorded events to 
claim a reasonable level of accuracy.   

 

 49



4. Appendices 
 
4.1 Appendix A 

 
4.1.1 Macro 1 
 
//  This macro groups the raw data by multi-layer and tube number, 
//  plots the histos (12 per run) and fits the data to a combination 
//  of three Fermi-Dirac Equations.  It then stores all of the  
//  relevant data in an ntuple for later use (by the ana-prefixed macros). 
 
#include <sstream> 
#include <iostream> 
#include <string> 
#include "MyClass_ntup.h" 
#include "TH1.h" 
#include "TFile.h" 
#include "TChain.h" 
#include "TTree.h" 
#include "TDirectory.h" 
#include "TNtuple.h" 
#include "TF1.h" 
#include "TCanvas.h" 
 
const int nWires = 56; 
TH1F* histo_mdttdc_wire[nWires]; 
TH1F* histo_mdttdc_tube[3][4]; 
TNtuple *ntup_RunData; 
TCanvas* canv[12][3]; 
TPad* pad_canv[12][3][4]; 
 
double myfunc(double *x, double *p){ 
  return p[0]+((p[1]*(1+p[2]*exp(-(x[0]-p[4])/p[3])))/ 
        ((1+exp((-x[0]+p[4])/p[6]))*(1+exp((x[0]-p[5])/p[7]))));   
} 
 
void fill_ntuple_allRuns() 
{ 
  TArrayF array_RunNumber = TArrayF(12); 
  array_RunNumber[0] = 700032; 
  array_RunNumber[1] = 700090; 
  array_RunNumber[2] = 700108; 
  array_RunNumber[3] = 700172; 
  array_RunNumber[4] = 1091; 
  array_RunNumber[5] = 1222; 
  array_RunNumber[6] = 1226; 
  array_RunNumber[7] = 1235; 
  array_RunNumber[8] = 1256; 
  array_RunNumber[9] = 1374; 
  array_RunNumber[10] = 1431; 
  array_RunNumber[11] = 1559; 
 
  // Defining cuts..... 
  int cut_station = 2; 
  int RunNumber, wireCount, cycleCount = 0; 
 
  ntup_RunData = new TNtuple("ntup_RunData","Ntuple of Run 
Data","station:eta:multi:nEntries:tube:t0:tmax:resol_t0:resol_tmax:err_t0:err_tmax:err_re
sol_t0:err_resol_tmax:chiSq",10000); 
 
  //  Defining the fitting function and setting the initial parameters.... 
  TF1 *funct_fit = new TF1("funct_fit", myfunc, 0, 2200, 8); 
  funct_fit->SetParName(0,"p1"); 
  funct_fit->SetParName(1,"p2"); 
  funct_fit->SetParName(2,"p3"); 
  funct_fit->SetParName(3,"p4"); 
  funct_fit->SetParName(4,"p5"); 
  funct_fit->SetParName(5,"p6"); 

 50



  funct_fit->SetParName(6,"p7"); 
  funct_fit->SetParName(7,"p8"); 
  funct_fit->SetParameter(0, 0.22); 
  funct_fit->SetParameter(1, 22); 
  funct_fit->SetParameter(2, 8.5); 
  funct_fit->SetParameter(3, 214); 
  funct_fit->SetParameter(4, 656); 
  funct_fit->SetParameter(5, 1480); 
  funct_fit->SetParameter(6, 7.4); 
  funct_fit->SetParameter(7, 22.4); 
   
  funct_fit->SetParLimits( 0,  0,    500);// starts at 0.22 
  funct_fit->SetParLimits( 1,  0.002,22000);// 22 
  funct_fit->SetParLimits( 2,  0.085,8500);// 8.5 
  funct_fit->SetParLimits( 3,  0.02, 20000);// 214 
  funct_fit->SetParLimits( 4,  550,  800);// 656 
  funct_fit->SetParLimits( 5,  1380, 1700);// 1480 
  funct_fit->SetParLimits( 6,  0.5,  30);// 7.4 
  funct_fit->SetParLimits( 7,  5,    50);// 22.4 
 
  //  Declaring the histo for mdttdc for each wire..... 
  for(int i=0; i<nWires; i++){ 
      ostringstream ost_histo_mdttdc_wire; 
      ost_histo_mdttdc_wire<<"histo_mdttdc_wire"<<i+1; 
      histo_mdttdc_wire[i] = new TH1F(ost_histo_mdttdc_wire.str().c_str(), 
ost_histo_mdttdc_wire.str().c_str(),2200,0,2200); 
      histo_mdttdc_wire[i]->SetDirectory(0); 
  } 
 
  //  Declaring the histo for mdttdc for each file and tube..... 
  for(int i=0; i<4; i++){ 
    for(int j=0; j<3; j++){ 
      char title_for_tube_histos[60]; 
      sprintf(title_for_tube_histos,"TDC counts, tube%d, BML%d, multi%d",j+1, int(-2 + 
(i>>1)), 1 + (i&1) ); 
      ostringstream ost_histo_mdttdc_tube1_; 
      ost_histo_mdttdc_tube1_<<"histo_mdttdc_Run_tube"<<j+1<<"_"<<i+1; 
      histo_mdttdc_tube[j][i] = new TH1F(ost_histo_mdttdc_tube1_.str().c_str(), 
title_for_tube_histos,2200,0,2200); 
      //histo_mdttdc_tube[j][i]->SetTitle(title_for_tube_histos";TDC counts"); 
      histo_mdttdc_tube[j][i]->SetDirectory(0); 
    } 
  } 
 
  for(int CountRunNumber = 0; CountRunNumber<=11; CountRunNumber++){ 
    RunNumber = int(array_RunNumber[CountRunNumber]); 
    ntup_RunData->Reset(); 
    cout << endl << "RunNumber: " << RunNumber <<endl; 
 
  for(int i=0; i<4; i++) 
    for(int j=0; j<3; j++){ 
      histo_mdttdc_tube[j][i]->Reset(); 
    } 
 
    //  Creating the chain of data (for now we're only doing one file at a time... 
    TChain *chain_data = new TChain("data"); 
    int maxFilePiece = 0; 
    char filename_raw[80]; 
    if(RunNumber==1758)                                                    maxFilePiece = 
2; 
    if((RunNumber==700032) || (RunNumber==700108))                         maxFilePiece = 
3; 
    if((RunNumber==1764)   || (RunNumber==700090))                         maxFilePiece = 
4; 
    if((RunNumber==1091)   || (RunNumber==1235))                           maxFilePiece = 
5; 
    if((RunNumber==1220)   || (RunNumber==1223)   || (RunNumber==1227) ||  
       (RunNumber==1270)   || (RunNumber==1374))                           maxFilePiece = 
6; 
    if((RunNumber==1222)   || (RunNumber==1226)   || (RunNumber==1256) ||  
       (RunNumber==1263)   || (RunNumber==1431)   || (RunNumber==1559) || 

 51



       (RunNumber==700172))                                                maxFilePiece = 
7; 
    if(maxFilePiece==0){ 
      cout << "This file doesn't exist..." << endl; 
    } 
    for(int filePiece = 1; filePiece <= maxFilePiece; filePiece++){ 
      
sprintf(filename_raw,"/scratch/nfs/data/athen/rootdata/run_%d_%d.root/MUTB/h10",RunNumber
,filePiece); 
      chain_data->Add(filename_raw); 
    } 
    MyClass_ntup t(chain_data); 
    cout<<"Number of events is "<<t.fChain->GetEntries()<<endl; // I wonder how many 
events we have... 
 
    for (cut_station = 2; cut_station == 2; cut_station++){ 
      for (int eventCount = 0; eventCount < t.fChain->GetEntries(); eventCount++) // Loop 
over all events 
 { 
   t.GetEntry(eventCount);  
   for (int hitCount = 0; hitCount < t.nmdtdig; hitCount++) // Loop over hits for 
each event 
     { 
       wireCount = (int(t.mwire[hitCount])-1); // "wireCount" is easier to type  
                                               // (and read) than 
"int(t.mwire[hitCount])-1". 
        
       //  Let's make some cuts... 
       if ((t.mstation[hitCount] == cut_station) && (wireCount < nWires)) { 
  (histo_mdttdc_wire[wireCount])->Fill(t.mdttdc[hitCount]);  // Fill 
histo_mdttdc 
  int cycle = int(2*(2 + t.meta[hitCount]) +  t.mmulti[hitCount] - 1); 
  if( cycle<0 || cycle>3 ) continue; 
  int tubenumber = -1; 
  if(  t.mmulti[hitCount] == 2) tubenumber = wireCount%3; 
  if(  t.mmulti[hitCount] == 1) tubenumber = 2 - wireCount%3; 
 
  if( ( (t.mmulti[hitCount] == 1) && (t.mlayer[hitCount] == 1) && 
(t.mwire[hitCount] == 55) ) || 
      ( (t.mmulti[hitCount] == 1) && (t.mlayer[hitCount] == 3) && 
(t.mwire[hitCount] == 55) ) || 
      ( (t.mmulti[hitCount] == 2) && (t.mlayer[hitCount] == 1) && 
(t.mwire[hitCount] == 56) ) || 
      ( (t.mmulti[hitCount] == 2) && (t.mlayer[hitCount] == 2) && 
(t.mwire[hitCount] == 56) ) ){ 
    tubenumber = 2;} 
  if( ( (t.mmulti[hitCount] == 1) && (t.mlayer[hitCount] == 1) && 
(t.mwire[hitCount] == 56) ) || 
      ( (t.mmulti[hitCount] == 1) && (t.mlayer[hitCount] == 2) && 
(t.mwire[hitCount] == 55) ) || 
      ( (t.mmulti[hitCount] == 2) && (t.mlayer[hitCount] == 2) && 
(t.mwire[hitCount] == 55) ) || 
      ( (t.mmulti[hitCount] == 2) && (t.mlayer[hitCount] == 3) && 
(t.mwire[hitCount] == 56) ) ){ 
    tubenumber = 1;} 
  if( ( (t.mmulti[hitCount] == 1) && (t.mlayer[hitCount] == 2) && 
(t.mwire[hitCount] == 56) ) || 
      ( (t.mmulti[hitCount] == 1) && (t.mlayer[hitCount] == 3) && 
(t.mwire[hitCount] == 56) ) || 
      ( (t.mmulti[hitCount] == 2) && (t.mlayer[hitCount] == 1) && 
(t.mwire[hitCount] == 55) ) || 
      ( (t.mmulti[hitCount] == 2) && (t.mlayer[hitCount] == 3) && 
(t.mwire[hitCount] == 55) ) ){ 
    tubenumber = 0;} 
 
  if( tubenumber<0) continue; 
   
  histo_mdttdc_tube[tubenumber][cycle]->Fill(t.mdttdc[hitCount]-
t.mtrigger[hitCount]); 
       } 
     } // ending hitCount loop 

 52



 } // ending eventCount loop 
      double init_par[] = {0.22, 22, 8.5, 214, 656, 1480, 7.4, 22.4}; 
 
      for(int tubeCount = 0;tubeCount <3;tubeCount++){ 
 char name_for_canvas[50]; 
 sprintf(name_for_canvas,"canv_tube%d_Run%d",tubeCount,RunNumber); 
 char title_for_canvas[50]; 
 sprintf(title_for_canvas,"histo of mdttdc Run %d (Tube 
%d)",RunNumber,tubeCount+1); 
 //  To take a look at things as we go 
 canv[CountRunNumber][tubeCount] = new 
TCanvas(name_for_canvas,title_for_canvas,1200,900);  
 
 for(cycleCount = 0; cycleCount<4; cycleCount++){ 
   char name_for_pad[50]; 
   
sprintf(name_for_pad,"pad_canv_tube%d_Run%d_cycle%d",tubeCount+1,RunNumber,cycleCount+1); 
   char title_for_pad[50]; 
   sprintf(title_for_pad,"histo of mdttdc Run %d (Tube %d, Cycle 
%d)",RunNumber,tubeCount+1,cycleCount+1); 
 
   if(cycleCount == 0){  
     pad_canv[CountRunNumber][tubeCount][0] = new 
TPad(name_for_pad,title_for_pad,0.01,0.51,0.49,0.99);}// top left pad 
   if(cycleCount == 1){  
     pad_canv[CountRunNumber][tubeCount][1] = new 
TPad(name_for_pad,title_for_pad,0.51,0.51,0.99,0.99);}// top right pad 
   if(cycleCount == 2){  
     pad_canv[CountRunNumber][tubeCount][2] = new 
TPad(name_for_pad,title_for_pad,0.01,0.01,0.49,0.49);}// bot left pad 
   if(cycleCount == 3){  
     pad_canv[CountRunNumber][tubeCount][3] = new 
TPad(name_for_pad,title_for_pad,0.51,0.01,0.99,0.49);}// bot right pad 
 
   funct_fit->SetParameters(init_par); 
   histo_mdttdc_tube[tubeCount][cycleCount]->Fit("funct_fit","Q0","",550,2000); 
 
   pad_canv[CountRunNumber][tubeCount][cycleCount]->Draw(); 
   pad_canv[CountRunNumber][tubeCount][cycleCount]->cd(); 
   histo_mdttdc_tube[tubeCount][cycleCount]->Draw(); 
   pad_canv[CountRunNumber][tubeCount][cycleCount]->Modified(); 
   canv[CountRunNumber][tubeCount]->cd(); 
 
   // And finally filling the ntuple... 
   ntup_RunData->Fill(2,                            // station 
        -2 + (cycleCount>>1), // eta 
         1 + (cycleCount &1), // multi 
        histo_mdttdc_tube[tubeCount][cycleCount]->GetEntries(), // 
number of entries 
        tubeCount + 1,              // tube number 
        funct_fit->GetParameter(4), // array_t0[cycleCount], 
        funct_fit->GetParameter(5), // array_tmax[cycleCount], 
        funct_fit->GetParameter(6), // array_resol_t0[cycleCount], 
        funct_fit->GetParameter(7), // array_resol_tmax[cycleCount], 
        funct_fit->GetParError(4),  // array_err_t0[cycleCount], 
        funct_fit->GetParError(5),  //array_err_tmax[cycleCount], 
        funct_fit->GetParError(6),  //array_err_resol_t0[cycleCount], 
        funct_fit->GetParError(7),  
//array_err_resol_tmax[cycleCount], 
        (funct_fit->GetChisquare())/(funct_fit->GetNDF()));  // 
array_chiSq[cycleCount]); 
 }// ending cycleCount 
 
 //  Saving the histo images... 
 char histo_filename_ps[100]; 
 char histo_filename_gif[100]; 
 sprintf(histo_filename_ps,"immagini/histo_spectra_fits/histo_Run%d_Tube%d.ps",RunN
umber,tubeCount+1); 
 sprintf(histo_filename_gif,"immagini/histo_spectra_fits/histo_Run%d_Tube%d.gif",Ru
nNumber,tubeCount+1); 
 canv[CountRunNumber][tubeCount]->SaveAs(histo_filename_ps); 

 53



 canv[CountRunNumber][tubeCount]->SaveAs(histo_filename_gif); 
 canv[CountRunNumber][tubeCount]->Close(); 
 
      }// ending tubeCount 
    } // ending cut_station loop 
 
    //  Writing the ntuple to a file... 
    char newFilename[100]; 
    char description_of_ntuple[30]; 
    sprintf(newFilename,"ntup_files/file_ntup_Run%d.root",RunNumber); 
    sprintf(description_of_ntuple,"Ntuple of Run %d",RunNumber); 
 
    TFile *hfile = new TFile(newFilename,"RECREATE",description_of_ntuple); 
    ntup_RunData->SetDirectory(hfile); 
    hfile->Write(); 
 
    delete chain_data; 
 
  }//ending CountRunNumber loop 
 
} 
 
 
 
 
 
 
 
4.1.2 Macro 2 
 
//  This macro takes the ntuple data from macro 1, attaches the proper  
//  temps and times to the data and then plots tdrift vs tube number  
//  for each of the runs and stations.  It also prints the values out to the screen.   
//  In addtion, it calibrates the data for temp and bit correction.   
 
#include <sstream> 
#include <iostream> 
#include "MyClass_ana.h" 
#include "TChain.h" 
#include "TFile.h" 
#include "TH1.h" 
#include "TH2.h" 
#include "TCanvas.h" 
#include "TPad.h" 
#include "TGraphErrors.h" 
 
 
void ana_mean_allRuns() 
{ 
  // Defining all of our graphs and arrays and more: 
  TGraphErrors* graph_tdrift_nEntries_tube[12][3][4]; 
  TGraphErrors* graph_tdrift_tubeNum_tube[12][3][4]; 
  float cut_nEntries = 1; // should be unnecessary 
  float cut_error = 50; // should be unnecessary 
  TCanvas* c1[12]; 
  TPad* pad_c1[12][4]; 
 
 
  for(int i=0; i<4; i++) 
    for(int j=0; j<3; j++) 
      for(int k=0; k<12; k++){ 
 graph_tdrift_nEntries_tube[k][j][i] = new TGraphErrors(24); 
 graph_tdrift_tubeNum_tube[k][j][i]  = new TGraphErrors(24); 
  } 
 
  TArrayF array_RunNumber = TArrayF(12); 
  array_RunNumber[0] = 700032; 
  array_RunNumber[1] = 700090; 

 54



  array_RunNumber[2] = 700108; 
  array_RunNumber[3] = 700172; 
  array_RunNumber[4] = 1091; 
  array_RunNumber[5] = 1222; 
  array_RunNumber[6] = 1226; 
  array_RunNumber[7] = 1235; 
  array_RunNumber[8] = 1256; 
  array_RunNumber[9] = 1374; 
  array_RunNumber[10] = 1431; 
  array_RunNumber[11] = 1559; 
  int RunNumber; 
 
  for(int CountRunNumber = 0; CountRunNumber<=11; CountRunNumber++){ 
    RunNumber = int(array_RunNumber[CountRunNumber]); 
    cout << "RunNumber: " << RunNumber <<endl; 
 
 
    // Defining the chain, importing the data, setting up a MyClass_ana called "data"... 
    char input_filename[120]; 
    TChain *chain_data = new TChain("data"); 
    
sprintf(input_filename,"/afs/lnf/user/j/jkamin/work/atlas/root/final_macros/ntup_files/fi
le_ntup_Run%d.root/ntup_RunData",RunNumber); 
    chain_data->Add(input_filename); 
    MyClass_ana data(chain_data); 
    int nEntries = int(data.fChain->GetEntries()); 
    cout<<"Number of events is "<< nEntries << endl << endl; 
 
    //  Defining some floats (for our graphs) and ints (for our loops)... 
    float tdrift[12][3][4],err_tdrift[12][3][4]; 
    int cut_eta,cut_multi,cycle; 
    static const float ref_temperature = 27.0; 
    static const float bit_correction = 0.78125; 
    float temperature = 27.0; 
    float ore = 0; 
    float temperature_correction = 0; 
 
    //  Looping over all the cuts... 
    for(cut_eta = -2; cut_eta <= -1; cut_eta++){ 
      for(cut_multi = 1; cut_multi <=2; cut_multi++){ 
 
 //  Setting the appropriate tempuratura and ore(time)... 
 if(RunNumber == 1091   && cut_multi == 1){  
   temperature = 27.60; 
   ore = 428;} 
 if(RunNumber == 1091   && cut_multi == 2){ 
   temperature = 27.42; 
   ore = 428;} 
 if(RunNumber == 1220   && cut_multi == 1){ 
   temperature = 28.48; 
   ore = 492;} 
 if(RunNumber == 1220   && cut_multi == 2){ 
   temperature = 28.38; 
   ore = 492;} 
 if(RunNumber == 1222   && cut_multi == 1){ 
   temperature = 28.83; 
   ore = 495;} 
 if(RunNumber == 1222   && cut_multi == 2){ 
   temperature = 28.65; 
   ore = 495;} 
 if(RunNumber == 1223   && cut_multi == 1){ 
   temperature = 28.85; 
   ore = 496;} 
 if(RunNumber == 1223   && cut_multi == 2){ 
   temperature = 28.66; 
   ore = 496;} 
 if(RunNumber == 1226   && cut_multi == 1){ 
   temperature = 28.18; 
   ore = 499;} 
 if(RunNumber == 1226   && cut_multi == 2){ 
   temperature = 28.06; 

 55



   ore = 499;} 
 if(RunNumber == 1235   && cut_multi == 1){ 
   temperature = 25.33; 
   ore = 508;} 
 if(RunNumber == 1235   && cut_multi == 2){ 
   temperature = 25.72; 
   ore = 508;} 
 if(RunNumber == 1256   && cut_multi == 1){ 
   temperature = 26.07; 
   ore = 535;} 
 if(RunNumber == 1256   && cut_multi == 2){ 
   temperature = 26.37; 
   ore = 535;} 
 if(RunNumber == 1263){ 
   ore = 544; 
   cout << "We don't have a temperature measurement for this run!!!" << endl;} 
 if(RunNumber == 1270){ 
   ore = 554; 
   cout << "We don't have a temperature measurement for this run!!!" << endl;}       
 if(RunNumber == 1374   && cut_multi == 1){ 
   temperature = 25.31; 
   ore = 672;} 
 if(RunNumber == 1374   && cut_multi == 2){ 
   temperature = 25.57; 
   ore = 672;} 
 if(RunNumber == 1431   && cut_multi == 1){ 
   temperature = 26.02; 
   ore = 694;} 
 if(RunNumber == 1431   && cut_multi == 2){ 
   temperature = 26.17; 
   ore = 694;} 
 if(RunNumber == 1559   && cut_multi == 1){ 
   temperature = 26.76; 
   ore = 833;} 
 if(RunNumber == 1559   && cut_multi == 2){ 
   temperature = 26.54; 
   ore = 833;} 
 if(RunNumber == 700032 && cut_multi == 1){ 
   temperature = 23.81; 
   ore = 4;} 
 if(RunNumber == 700032 && cut_multi == 2){ 
   temperature = 24.17; 
   ore = 4;} 
 if(RunNumber == 700090 && cut_multi == 1){ 
   temperature = 24.86; 
   ore = 30;} 
 if(RunNumber == 700090 && cut_multi == 2){ 
   temperature = 25.23; 
   ore = 30;} 
 if(RunNumber == 700108 && cut_multi == 1){ 
   temperature = 26.88; 
   ore = 34;} 
 if(RunNumber == 700108 && cut_multi == 2){ 
   temperature = 26.77; 
   ore = 34;} 
 if(RunNumber == 700172 && cut_multi == 1){ 
   temperature = 26.92; 
   ore = 47;} 
 if(RunNumber == 700172 && cut_multi == 2){ 
   temperature = 26.90; 
   ore = 47;} 
 if(ore==0) cout <<"The gas was changed for this run so we can't compare the time 
with the rest (or some source was on)!!!" << endl; 
 
 
 for(int entryCount = 0; entryCount < nEntries; entryCount++){ 
   data.GetEntry(entryCount); 
 
   //  Let's make some cuts... 
   if(data.eta == cut_eta){ 
     if(data.multi == cut_multi){ 

 56



  
       if( data.eta == -2 && data.multi == 1) cycle = 1; 
       if( data.eta == -2 && data.multi == 2) cycle = 2; 
       if( data.eta == -1 && data.multi == 1) cycle = 3; 
       if( data.eta == -1 && data.multi == 2) cycle = 4; 
        
       if(data.tube==1)  cout <<"cycle: "<<cycle<<endl; 
 
       temperature_correction = (temperature-ref_temperature)*(-2.4); // correcting 
for temperature. 
       float tdrift_temp = ((data.tmax-data.t0)*bit_correction)-
(temperature_correction); 
       cout <<"Tube#: "<<data.tube<<", tdrift: "<<tdrift_temp<<endl; 
       float err_tdrift_temp = 
sqrt((data.err_t0*data.err_t0)+(data.err_tmax*data.err_tmax));  

      // we ignore the 
       // temp for the errors. 
 
       //  This is just to clean up the few large errored tdrifts  
       //  that somehow snuck past the other cuts... 
       if(err_tdrift_temp<2000 && 
   !((data.eta == -1) && (RunNumber == 700032))) 
  if(err_tdrift_temp<2000 && 
     !((data.eta == -1) && (RunNumber == 1374))) 
    if(err_tdrift_temp<2000 && 
       !((data.eta == -1) && (RunNumber == 1431))){ 
 
      tdrift[CountRunNumber][int(data.tube)-1][cycle-1] = tdrift_temp; 
      err_tdrift[CountRunNumber][int(data.tube)-1][cycle-1] = 
err_tdrift_temp; 
    }// ending if err_tdrift<200 
        
     }// ending if cut_multi 
   }// ending if cut_eta   
 }// ending entryCount 
  
 //  Also, setting the points on the new graphs for those: 
 for(int i = 0; i<3; i++){ 
   graph_tdrift_tubeNum_tube[CountRunNumber][i][cycle-1]-
>SetPoint(0,i+1,tdrift[CountRunNumber][i][cycle-1]); 
   graph_tdrift_tubeNum_tube[CountRunNumber][i][cycle-1]-
>SetPointError(0,0,err_tdrift[CountRunNumber][i][cycle-1]); 
 } 
      }// ending cut_multi 
    }// ending cut_eta 
 
  // Creating the Canvas and declaring Pads... 
    char name_for_canvas[10]; 
    char title_for_canvas[50]; 
    sprintf(name_for_canvas,"c1_%d",CountRunNumber); 
    sprintf(title_for_canvas,"mean values of t drift Run %d",RunNumber); 
    c1[CountRunNumber] = new TCanvas(name_for_canvas,title_for_canvas); 
 
    for(cycle = 1; cycle < 5; cycle++){ 
 
      char name_for_pad[10]; 
      sprintf(name_for_pad,"pad_c1_cycle:%d_RunNum:%d",cycle,RunNumber); 
      //  Setting up the pads in the four corners of the canvas: 
      pad_c1[CountRunNumber][0] = new TPad("pad_c1_0", "eta-2,m1  
means",0.01,0.51,0.49,0.99); 
      pad_c1[CountRunNumber][1] = new TPad("pad_c1_1", "eta-2,m2  
means",0.51,0.51,0.99,0.99);      
      pad_c1[CountRunNumber][2] = new TPad("pad_c1_2", "eta-1,m1  
means",0.01,0.01,0.49,0.49);   
      pad_c1[CountRunNumber][3] = new TPad("pad_c1_3", "eta-1,m2  
means",0.51,0.01,0.99,0.49);   
 
      c1[CountRunNumber]->cd(); 
      pad_c1[CountRunNumber][cycle-1]->Draw(); 
      pad_c1[CountRunNumber][cycle-1]->cd(); 
 

 57



      (graph_tdrift_tubeNum_tube[CountRunNumber][0][cycle-1]->GetYaxis())-
>SetLimits(640,665); 
      (graph_tdrift_tubeNum_tube[CountRunNumber][0][cycle-1]->GetXaxis())-
>SetLimits(0,10); 
      (graph_tdrift_tubeNum_tube[CountRunNumber][0][cycle-1]->GetYaxis())->UnZoom(); 
      (graph_tdrift_tubeNum_tube[CountRunNumber][0][cycle-1]->GetXaxis())->UnZoom(); 
 
      (graph_tdrift_tubeNum_tube[CountRunNumber][0][cycle-1]->GetYaxis())-
>SetTitle("tdrift (ns)"); 
      (graph_tdrift_tubeNum_tube[CountRunNumber][0][cycle-1]->GetXaxis())->SetTitle("tube 
number"); 
 
      graph_tdrift_tubeNum_tube[CountRunNumber][0][cycle-1]->SetLineColor(2); 
      graph_tdrift_tubeNum_tube[CountRunNumber][1][cycle-1]->SetLineColor(4); 
      graph_tdrift_tubeNum_tube[CountRunNumber][2][cycle-1]->SetLineColor(3); 
      char title_for_graphs[50]; 
      sprintf(title_for_graphs,"y:tdrift vs x:tubeNum Run%d, BML%d, multi%d",RunNumber, -
2+((cycle-1)>>1), 1+((cycle-1)&1) ); 
      graph_tdrift_tubeNum_tube[CountRunNumber][0][cycle-1]->SetTitle(title_for_graphs); 
 
      graph_tdrift_tubeNum_tube[CountRunNumber][0][cycle-1]->Draw("AP"); 
      graph_tdrift_tubeNum_tube[CountRunNumber][1][cycle-1]->Draw("P"); 
      graph_tdrift_tubeNum_tube[CountRunNumber][2][cycle-1]->Draw("P"); 
   
      pad_c1[CountRunNumber][cycle-1]->Modified(); 
      c1[CountRunNumber]->cd(); 
    } 
  
 char output_ps_filename[70]; 
 char output_gif_filename[70]; 
 sprintf(output_ps_filename,"immagini/tdrift_vs_tubeNum/TdriftVsTubeNum_run%d.ps",R
unNumber); 
 sprintf(output_gif_filename,"immagini/tdrift_vs_tubeNum/TdriftVsTubeNum_run%d.gif"
,RunNumber); 
 
 c1[CountRunNumber]->SetCanvasSize(950,712); 
 c1[CountRunNumber]->SaveAs(output_ps_filename); 
 c1[CountRunNumber]->SaveAs(output_gif_filename); 
 
  }//ending CountRunNumber loop 
 
  cout << "We made cuts: " << endl; 
  cout << "nEntries >= "<<cut_nEntries<<" && error <= "<<cut_error<<" ns"<<endl<<endl; 
  cout << "------ Cycle 1: BML 2, Multi 1 ------" << endl; 
  cout << "------ Cycle 2: BML 2, Multi 2 ------" << endl; 
  cout << "------ Cycle 3: BML 1, Multi 1 ------" << endl; 
  cout << "------ Cycle 4: BML 1, Multi 2 ------" << endl; 
} 
 
 
 

4.1.3 Macro 3 
 
//  This macro takes the ntuple data from macro 1, attaches the proper  
//  temps and times to the data and then plots tdrift vs time  
//  for each tube number and station.  It also prints the values out to the screen.   
//  In addtion, it calibrates the data for temp and bit correction.   
 
#include <sstream> 
#include <iostream> 
#include "MyClass_ana.h" 
#include "TChain.h" 
#include "TFile.h" 
#include "TH1.h" 
#include "TH2.h" 
#include "TCanvas.h" 
#include "TPad.h" 
#include "TGraphErrors.h" 
 

 58



void ana_tdrift_vs_time() 
{ 
  // Defining all of our graphs and arrays and more: 
  TGraphErrors* graph_tdrift_nEntries_tube[12][3][4]; 
  TGraphErrors* graph_tdrift_tubeNum_tube[12][3][4]; 
  TGraphErrors* graph_tdrift_vs_time[3][4]; 
  float cut_nEntries = 1; // should be unnecessary 
  float cut_error = 50; // should be unnecessary 
  TCanvas* c1[4]; 
  TPad* pad_c1[3][4]; 
 
  for(int i=0; i<4; i++) 
    for(int j=0; j<3; j++){ 
      graph_tdrift_vs_time[j][i] = new TGraphErrors(12); 
      for(int k=0; k<12; k++){ 
 graph_tdrift_nEntries_tube[k][j][i] = new TGraphErrors(24); 
 graph_tdrift_tubeNum_tube[k][j][i]  = new TGraphErrors(24); 
      } 
    } 
 
  TArrayF array_RunNumber = TArrayF(12); 
  array_RunNumber[0] = 700032; 
  array_RunNumber[1] = 700090; 
  array_RunNumber[2] = 700108; 
  array_RunNumber[3] = 700172; 
  array_RunNumber[4] = 1091; 
  array_RunNumber[5] = 1222; 
  array_RunNumber[6] = 1226; 
  array_RunNumber[7] = 1235; 
  array_RunNumber[8] = 1256; 
  array_RunNumber[9] = 1374; 
  array_RunNumber[10] = 1431; 
  array_RunNumber[11] = 1559; 
  int RunNumber; 
 
  for(int CountRunNumber = 0; CountRunNumber<=11; CountRunNumber++){ 
    RunNumber = int(array_RunNumber[CountRunNumber]); 
    cout << "RunNumber: " << RunNumber <<endl; 
 
    // Defining the chain, importing the data, setting up a MyClass_ana called "data"... 
    char input_filename[120]; 
    TChain *chain_data = new TChain("data"); 
    
sprintf(input_filename,"/afs/lnf/user/j/jkamin/work/atlas/root/final_macros/ntup_files/fi
le_ntup_Run%d.root/ntup_RunData",RunNumber); 
    chain_data->Add(input_filename); 
    MyClass_ana data(chain_data); 
    int nEntries = int(data.fChain->GetEntries()); 
    cout<<"Number of events is "<< nEntries << endl << endl; 
 
    //  Defining some floats (for our graphs) and ints (for our loops)... 
    float tdrift[12][3][4],err_tdrift[12][3][4]; 
    int cut_eta,cut_multi,cycle; 
    static const float ref_temperature = 27.0; 
    static const float bit_correction = 0.78125; 
    float temperature = 27.0; 
    float ore = 0; 
    float temperature_correction = 0; 
 
    //  Looping over all the cuts... 
    for(cut_eta = -2; cut_eta <= -1; cut_eta++){ 
      for(cut_multi = 1; cut_multi <=2; cut_multi++){ 
 
 //  Setting the appropriate tempuratura and ore(time)... 
 if(RunNumber == 1091   && cut_multi == 1){  
   temperature = 27.60; 
   ore = 428;} 
 if(RunNumber == 1091   && cut_multi == 2){ 
   temperature = 27.42; 
   ore = 428;} 
 if(RunNumber == 1220   && cut_multi == 1){ 

 59



   temperature = 28.48; 
   ore = 492;} 
 if(RunNumber == 1220   && cut_multi == 2){ 
   temperature = 28.38; 
   ore = 492;} 
 if(RunNumber == 1222   && cut_multi == 1){ 
   temperature = 28.83; 
   ore = 495;} 
 if(RunNumber == 1222   && cut_multi == 2){ 
   temperature = 28.65; 
   ore = 495;} 
 if(RunNumber == 1223   && cut_multi == 1){ 
   temperature = 28.85; 
   ore = 496;} 
 if(RunNumber == 1223   && cut_multi == 2){ 
   temperature = 28.66; 
   ore = 496;} 
 if(RunNumber == 1226   && cut_multi == 1){ 
   temperature = 28.18; 
   ore = 499;} 
 if(RunNumber == 1226   && cut_multi == 2){ 
   temperature = 28.06; 
   ore = 499;} 
 if(RunNumber == 1227   && cut_multi == 1){ 
   temperature = 27.81; 
   ore = 500;} 
 if(RunNumber == 1227   && cut_multi == 2){ 
   temperature = 27.76; 
   ore = 500;} 
 if(RunNumber == 1235   && cut_multi == 1){ 
   temperature = 25.33; 
   ore = 508;} 
 if(RunNumber == 1235   && cut_multi == 2){ 
   temperature = 25.72; 
   ore = 508;} 
 if(RunNumber == 1256   && cut_multi == 1){ 
   temperature = 26.07; 
   ore = 535;} 
 if(RunNumber == 1256   && cut_multi == 2){ 
   temperature = 26.37; 
   ore = 535;} 
 if(RunNumber == 1263){ 
   ore = 544; 
   cout << "We don't have a temperature measurement for this run!!!" << endl;} 
 if(RunNumber == 1270){ 
   ore = 554; 
   cout << "We don't have a temperature measurement for this run!!!" << endl;}       
 if(RunNumber == 1374   && cut_multi == 1){ 
   temperature = 25.31; 
   ore = 672;} 
 if(RunNumber == 1374   && cut_multi == 2){ 
   temperature = 25.57; 
   ore = 672;} 
 if(RunNumber == 1431   && cut_multi == 1){ 
   temperature = 26.02; 
   ore = 694;} 
 if(RunNumber == 1431   && cut_multi == 2){ 
   temperature = 26.17; 
   ore = 694;} 
 if(RunNumber == 1559   && cut_multi == 1){ 
   temperature = 26.76; 
   ore = 833;} 
 if(RunNumber == 1559   && cut_multi == 2){ 
   temperature = 26.54; 
   ore = 833;} 
 if(RunNumber == 700032 && cut_multi == 1){ 
   temperature = 23.81; 
   ore = 4;} 
 if(RunNumber == 700032 && cut_multi == 2){ 
   temperature = 24.17; 
   ore = 4;} 

 60



 if(RunNumber == 700090 && cut_multi == 1){ 
   temperature = 24.86; 
   ore = 30;} 
 if(RunNumber == 700090 && cut_multi == 2){ 
   temperature = 25.23; 
   ore = 30;} 
 if(RunNumber == 700108 && cut_multi == 1){ 
   temperature = 26.88; 
   ore = 34;} 
 if(RunNumber == 700108 && cut_multi == 2){ 
   temperature = 26.77; 
   ore = 34;} 
 if(RunNumber == 700172 && cut_multi == 1){ 
   temperature = 26.92; 
   ore = 47;} 
 if(RunNumber == 700172 && cut_multi == 2){ 
   temperature = 26.90; 
   ore = 47;} 
 if(ore==0) cout <<"The gas was changed for this run so we can't compare the time 
with the rest!!!" << endl; 
 
 for(int entryCount = 0; entryCount < nEntries; entryCount++){ 
   data.GetEntry(entryCount); 
 
   //  Let's make some cuts... 
   if(data.eta == cut_eta){ 
     if(data.multi == cut_multi){ 
  
       if( data.eta == -2 && data.multi == 1) cycle = 1; 
       if( data.eta == -2 && data.multi == 2) cycle = 2; 
       if( data.eta == -1 && data.multi == 1) cycle = 3; 
       if( data.eta == -1 && data.multi == 2) cycle = 4; 
        
       if(data.tube==1)  cout <<"cycle: "<<cycle<<endl; 
 
       temperature_correction = (temperature-ref_temperature)*(-2.4); // correcting 
for temperature. 
       float tdrift_temp = ((data.tmax-data.t0)*bit_correction)-
(temperature_correction); 
       cout <<"Tube#: "<<data.tube<<", tdrift: "<<tdrift_temp<<endl; 
       float err_tdrift_temp = 
sqrt((data.err_t0*data.err_t0)+(data.err_tmax*data.err_tmax));  

      // we ignore the 
       // temp for the errors. 
 
       //  This is just to clean up the few large errored tdrifts  
       //  that somehow snuck past the other cuts… 
       if(err_tdrift_temp<2000 && 
   !((data.eta == -1) && (RunNumber == 700032))) 
  if(err_tdrift_temp<2000 && 
     (!((data.eta == -1) && (RunNumber == 1374)))) 
    if(err_tdrift_temp<2000 && 
       (!((data.eta == -1) && (RunNumber == 1431)))){      
      tdrift[CountRunNumber][int(data.tube)-1][cycle-1] = tdrift_temp; 
      err_tdrift[CountRunNumber][int(data.tube)-1][cycle-1] = 
err_tdrift_temp; 
    }// ending if err_tdrift<200 
     }// ending if cut_multi 
   }// ending if cut_eta   
 }// ending entryCount 
  
 
 //  Also, setting the points on the new graphs for those: 
 for(int i = 0; i<3; i++){ 
   graph_tdrift_tubeNum_tube[CountRunNumber][i][cycle-1]-
>SetPoint(0,i+1,tdrift[CountRunNumber][i][cycle-1]); 
   graph_tdrift_tubeNum_tube[CountRunNumber][i][cycle-1]-
>SetPointError(0,0,err_tdrift[CountRunNumber][i][cycle-1]); 
   graph_tdrift_vs_time[i][cycle-1]-
>SetPoint(CountRunNumber,ore,tdrift[CountRunNumber][i][cycle-1]); 

 61



   graph_tdrift_vs_time[i][cycle-1]-
>SetPointError(CountRunNumber,0,err_tdrift[CountRunNumber][i][cycle-1]); 
 } 
      }// ending cut_multi 
    }// ending cut_eta 
 
  }//ending CountRunNumber loop 
 
  for(int cycle = 0; cycle < 4; cycle++){ 
 
    // Creating the Canvas... 
    char name_for_canvas[10]; 
    char title_for_canvas[50]; 
    sprintf(name_for_canvas,"c1_cycle%d",cycle+1); 
    sprintf(title_for_canvas,"mean values of tdrift vs time cycle%d",cycle+1); 
    c1[cycle] = new TCanvas(name_for_canvas,title_for_canvas); 
     
    for(int tube = 0; tube < 3; tube++){ 
       
      char name_for_pad[10]; 
      char title_for_pad[50]; 
      sprintf(name_for_pad,"pad_c1_tube%d_cycle%d",tube+1,cycle+1); 
      sprintf(title_for_pad,"tdrift vs time, tube%d cycle%d",tube+1,cycle+1); 
      // Setting the pads in the corners… 
      if(tube==0){  pad_c1[tube][cycle] = new 
TPad(name_for_pad,title_for_pad,0.01,0.51,0.49,0.99);} 
      if(tube==1){  pad_c1[tube][cycle] = new 
TPad(name_for_pad,title_for_pad,0.51,0.51,0.99,0.99);} 
      if(tube==2){  pad_c1[tube][cycle] = new 
TPad(name_for_pad,title_for_pad,0.01,0.01,0.49,0.49);} 
  
      c1[cycle]->cd(); 
      pad_c1[tube][cycle]->Draw(); 
      pad_c1[tube][cycle]->cd(); 
       
      (graph_tdrift_vs_time[tube][cycle]->GetYaxis())->SetLimits(644,664); 
      (graph_tdrift_vs_time[tube][cycle]->GetYaxis())->UnZoom(); 
 
      (graph_tdrift_vs_time[tube][cycle]->GetYaxis())->SetTitle("tdrift (ns)"); 
      (graph_tdrift_vs_time[tube][cycle]->GetXaxis())->SetTitle("time (hours)"); 
 
      char title_for_graphs[50]; 
      sprintf(title_for_graphs,"y:tdrift vs x:time tube%d, BML%d, multi%d",tube+1, -
2+(cycle>>1), 1+(cycle&1) ); 
      graph_tdrift_vs_time[tube][cycle]->SetTitle(title_for_graphs); 
      graph_tdrift_vs_time[tube][cycle]->Draw("AP"); 
  
      pad_c1[tube][cycle]->Modified(); 
      c1[cycle]->cd();     
    }// ending tube loop for displaying images 
     
    char output_ps_filename[70]; 
    char output_gif_filename[70]; 
    
sprintf(output_ps_filename,"immagini/tdrift_vs_time/TdriftVsTime_cycle%d.ps",cycle+1); 
    
sprintf(output_gif_filename,"immagini/tdrift_vs_time/TdriftVsTime_cycle%d.gif",cycle+1); 
     
    c1[cycle]->SetCanvasSize(950,712); 
    c1[cycle]->SaveAs(output_ps_filename); 
    c1[cycle]->SaveAs(output_gif_filename); 
  }// ending cycle loop for displaying images 
   
  cout << "We made cuts: " << endl; 
  cout << "nEntries >= "<<cut_nEntries<<" && error <= "<<cut_error<<" ns"<<endl<<endl; 
  cout << "------ Cycle 1: BML 2, Multi 1 ------" << endl; 
  cout << "------ Cycle 2: BML 2, Multi 2 ------" << endl; 
  cout << "------ Cycle 3: BML 1, Multi 1 ------" << endl; 
  cout << "------ Cycle 4: BML 1, Multi 2 ------" << endl << endl; 
} 
 

 62



 
 
 
 
 

 
4.1.4 Macro 4 
 
//  This macro takes the ntuple data from macro 1, attaches the proper  
//  temps and times to the data and then plots subtracted tdrifts vs tube number 
//  for each of the stations.  It also prints the values out to the screen.   
//  In addtion, it calibrates the data for temp and bit correction.   
 
#include <sstream> 
#include <iostream> 
#include "MyClass_ana.h" 
#include "TChain.h" 
#include "TFile.h" 
#include "TH1.h" 
#include "TH2.h" 
#include "TCanvas.h" 
#include "TPad.h" 
#include "TGraphErrors.h" 
 
void ana_subtract_tdrift_vs_time() 
{ 
  // Defining all of our graphs and arrays and more: 
  TGraphErrors* graph_tdrift_nEntries_tube[12][3][4]; 
  TGraphErrors* graph_tdrift_tubeNum_tube[12][3][4]; 
  TGraphErrors* graph_tdrift_vs_time[3][4]; 
  TGraphErrors* graph_subtract_tdrift_vs_time[3][4]; 
  float cut_nEntries = 1; // should be unnecessary 
  float cut_error = 50; // should be unnecessary 
  TCanvas* c1[4]; 
  TPad* pad_c1[3][4]; 
 
  for(int i=0; i<4; i++) 
    for(int j=0; j<3; j++){ 
      graph_tdrift_vs_time[j][i] = new TGraphErrors(12); 
      graph_subtract_tdrift_vs_time[j][i] = new TGraphErrors(12); 
      for(int k=0; k<12; k++){ 
 graph_tdrift_nEntries_tube[k][j][i] = new TGraphErrors(24); 
 graph_tdrift_tubeNum_tube[k][j][i]  = new TGraphErrors(24); 
      } 
    } 
 
  TArrayF array_RunNumber = TArrayF(12); 
  array_RunNumber[0] = 700032; 
  array_RunNumber[1] = 700090; 
  array_RunNumber[2] = 700108; 
  array_RunNumber[3] = 700172; 
  array_RunNumber[4] = 1091; 
  array_RunNumber[5] = 1222; 
  array_RunNumber[6] = 1226; 
  array_RunNumber[7] = 1235; 
  array_RunNumber[8] = 1256; 
  array_RunNumber[9] = 1374; 
  array_RunNumber[10] = 1431; 
  array_RunNumber[11] = 1559; 
  int RunNumber; 
 
  for(int CountRunNumber = 0; CountRunNumber<=11; CountRunNumber++){ 
    RunNumber = int(array_RunNumber[CountRunNumber]); 
    cout << "RunNumber: " << RunNumber <<endl; 
 
    // Defining the chain, importing the data, setting up a MyClass_ana called "data"... 
    char input_filename[120]; 
    TChain *chain_data = new TChain("data"); 

 63



    
sprintf(input_filename,"/afs/lnf/user/j/jkamin/work/atlas/root/final_macros/ntup_files/fi
le_ntup_Run%d.root/ntup_RunData",RunNumber); 
    chain_data->Add(input_filename); 
    MyClass_ana data(chain_data); 
    int nEntries = int(data.fChain->GetEntries()); 
    cout<<"Number of events is "<< nEntries << endl << endl; 
 
    //  Defining some floats (for our graphs) and ints (for our loops)... 
    float tdrift[12][3][4],err_tdrift[12][3][4]; 
    int cut_eta,cut_multi,cycle; 
    static const float ref_temperature = 27.0; 
    static const float bit_correction = 0.78125; 
    float temperature = 27.0; 
    float ore = 0; 
    float temperature_correction = 0; 
 
    //  Looping over all the cuts... 
    for(cut_eta = -2; cut_eta <= -1; cut_eta++){ 
      for(cut_multi = 1; cut_multi <=2; cut_multi++){ 
 
 //  Setting the appropriate tempuratura and ore(time)... 
 if(RunNumber == 1091   && cut_multi == 1){  
   temperature = 27.60; 
   ore = 428;} 
 if(RunNumber == 1091   && cut_multi == 2){ 
   temperature = 27.42; 
   ore = 428;} 
 if(RunNumber == 1220   && cut_multi == 1){ 
   temperature = 28.48; 
   ore = 492;} 
 if(RunNumber == 1220   && cut_multi == 2){ 
   temperature = 28.38; 
   ore = 492;} 
 if(RunNumber == 1222   && cut_multi == 1){ 
   temperature = 28.83; 
   ore = 495;} 
 if(RunNumber == 1222   && cut_multi == 2){ 
   temperature = 28.65; 
   ore = 495;} 
 if(RunNumber == 1223   && cut_multi == 1){ 
   temperature = 28.85; 
   ore = 496;} 
 if(RunNumber == 1223   && cut_multi == 2){ 
   temperature = 28.66; 
   ore = 496;} 
 if(RunNumber == 1226   && cut_multi == 1){ 
   temperature = 28.18; 
   ore = 499;} 
 if(RunNumber == 1226   && cut_multi == 2){ 
   temperature = 28.06; 
   ore = 499;} 
 if(RunNumber == 1227   && cut_multi == 1){ 
   temperature = 27.81; 
   ore = 500;} 
 if(RunNumber == 1227   && cut_multi == 2){ 
   temperature = 27.76; 
   ore = 500;} 
 if(RunNumber == 1235   && cut_multi == 1){ 
   temperature = 25.33; 
   ore = 508;} 
 if(RunNumber == 1235   && cut_multi == 2){ 
   temperature = 25.72; 
   ore = 508;} 
 if(RunNumber == 1256   && cut_multi == 1){ 
   temperature = 26.07; 
   ore = 535;} 
 if(RunNumber == 1256   && cut_multi == 2){ 
   temperature = 26.37; 
   ore = 535;} 
 if(RunNumber == 1263){  ore = 544; 

 64



   cout << "We don't have a temperature measurement for this run!!!" << endl;} 
 if(RunNumber == 1270){  ore = 554; 
   cout << "We don't have a temperature measurement for this run!!!" << endl;}       
 if(RunNumber == 1374   && cut_multi == 1){ 
   temperature = 25.31; 
   ore = 672;} 
 if(RunNumber == 1374   && cut_multi == 2){ 
   temperature = 25.57; 
   ore = 672;} 
 if(RunNumber == 1431   && cut_multi == 1){ 
   temperature = 26.02; 
   ore = 694;} 
 if(RunNumber == 1431   && cut_multi == 2){ 
   temperature = 26.17; 
   ore = 694;} 
 if(RunNumber == 1559   && cut_multi == 1){ 
   temperature = 26.76; 
   ore = 833;} 
 if(RunNumber == 1559   && cut_multi == 2){ 
   temperature = 26.54; 
   ore = 833;} 
 if(RunNumber == 700032 && cut_multi == 1){ 
   temperature = 23.81; 
   ore = 4;} 
 if(RunNumber == 700032 && cut_multi == 2){ 
   temperature = 24.17; 
   ore = 4;} 
 if(RunNumber == 700090 && cut_multi == 1){ 
   temperature = 24.86; 
   ore = 30;} 
 if(RunNumber == 700090 && cut_multi == 2){ 
   temperature = 25.23; 
   ore = 30;} 
 if(RunNumber == 700108 && cut_multi == 1){ 
   temperature = 26.88; 
   ore = 34;} 
 if(RunNumber == 700108 && cut_multi == 2){ 
   temperature = 26.77; 
   ore = 34;} 
 if(RunNumber == 700172 && cut_multi == 1){ 
   temperature = 26.92; 
   ore = 47;} 
 if(RunNumber == 700172 && cut_multi == 2){ 
   temperature = 26.90; 
   ore = 47;} 
 if(ore==0) cout <<"The gas was changed for this run so we can't compare the time 
with the rest!!!" << endl; 
 
 for(int entryCount = 0; entryCount < nEntries; entryCount++){ 
   data.GetEntry(entryCount); 
 
   //  Let's make some cuts... 
   if(data.eta == cut_eta){ 
     if(data.multi == cut_multi){ 
  
       if( data.eta == -2 && data.multi == 1) cycle = 1; 
       if( data.eta == -2 && data.multi == 2) cycle = 2; 
       if( data.eta == -1 && data.multi == 1) cycle = 3; 
       if( data.eta == -1 && data.multi == 2) cycle = 4; 
        
       if(data.tube==1)  cout <<"cycle: "<<cycle<<endl; 
 
       temperature_correction = (temperature-ref_temperature)*(-2.4); // correcting 
for temperature. 
       float tdrift_temp = ((data.tmax-data.t0)*bit_correction)-
(temperature_correction); 
       cout <<"Tube#: "<<data.tube<<", tdrift: "<<tdrift_temp<<endl; 
       float err_tdrift_temp = 
sqrt((data.err_t0*data.err_t0)+(data.err_tmax*data.err_tmax));  

      // we ignore the 
       // temp for the errors. 

 65



 
       //  This is just to clean up the few large errored tdrifts  
       //  that somehow snuck past the other cuts... 
       if(err_tdrift_temp<2000 && 
   !((data.eta == -1) && (RunNumber == 700032))) 
  if(err_tdrift_temp<2000 && 
     (!((data.eta == -1) && (RunNumber == 1374)))) 
    if(err_tdrift_temp<2000 && 
       (!((data.eta == -1) && (RunNumber == 1431)))){      
      tdrift[CountRunNumber][int(data.tube)-1][cycle-1] = tdrift_temp; 
      err_tdrift[CountRunNumber][int(data.tube)-1][cycle-1] = 
err_tdrift_temp; 
    }// ending if err_tdrift<200 
     }// ending if cut_multi 
   }// ending if cut_eta   
 }// ending entryCount 
  
 
 //  Also, setting the points on the new graphs for those: 
 for(int i = 0; i<3; i++){ 
   graph_tdrift_tubeNum_tube[CountRunNumber][i][cycle-1]-
>SetPoint(0,i+1,tdrift[CountRunNumber][i][cycle-1]); 
   graph_tdrift_tubeNum_tube[CountRunNumber][i][cycle-1]-
>SetPointError(0,0,err_tdrift[CountRunNumber][i][cycle-1]); 
   graph_tdrift_vs_time[i][cycle-1]-
>SetPoint(CountRunNumber,ore,tdrift[CountRunNumber][i][cycle-1]); 
   graph_tdrift_vs_time[i][cycle-1]-
>SetPointError(CountRunNumber,0,err_tdrift[CountRunNumber][i][cycle-1]); 
 } 
      }// ending cut_multi 
    }// ending cut_eta 
 
  }//ending CountRunNumber loop 
 
  for(int CountRunNumber = 0; CountRunNumber < 12; CountRunNumber++) 
    for(int cycle = 0; cycle < 4; cycle++) 
      for(int padNumber = 0; padNumber < 3; padNumber++){ 
 
 if((!(((cycle-1)>0) && (array_RunNumber[CountRunNumber] == 1374)))) 
   if((!(((cycle-1)>0) && (array_RunNumber[CountRunNumber] == 1431)))){      
 
 char title_for_graphs[50]; 
 
 double ore_temp[3]; 
 double tdrift_temp[3]; 
 double err_tdrift_temp[3]; 
 graph_tdrift_vs_time[0][cycle]-
>GetPoint(CountRunNumber,ore_temp[0],tdrift_temp[0]); 
 graph_tdrift_vs_time[1][cycle]-
>GetPoint(CountRunNumber,ore_temp[1],tdrift_temp[1]); 
 graph_tdrift_vs_time[2][cycle]-
>GetPoint(CountRunNumber,ore_temp[2],tdrift_temp[2]); 
 err_tdrift_temp[0] = graph_tdrift_vs_time[0][cycle]->GetErrorY(CountRunNumber); 
 err_tdrift_temp[1] = graph_tdrift_vs_time[1][cycle]->GetErrorY(CountRunNumber); 
 err_tdrift_temp[2] = graph_tdrift_vs_time[2][cycle]->GetErrorY(CountRunNumber); 
 
 if(padNumber==0){ 
   sprintf(title_for_graphs,"y:tdrift vs x:time tube(1-2) BML%d, multi%d",-
2+(cycle>>1), 1+(cycle&1) ); 
 
   graph_subtract_tdrift_vs_time[0][cycle]-
>SetPoint(CountRunNumber,ore_temp[0],(tdrift_temp[0]-tdrift_temp[1])); 
   graph_subtract_tdrift_vs_time[0][cycle]->SetPointError(CountRunNumber,0, 
         
sqrt((err_tdrift_temp[0]*err_tdrift_temp[0])+ 
              
(err_tdrift_temp[1]*err_tdrift_temp[1]))); 
 } 
 if(padNumber==1){ 
   sprintf(title_for_graphs,"y:tdrift vs x:time tube(1-3) BML%d, multi%d",-
2+(cycle>>1), 1+(cycle&1) ); 

 66



 
   graph_subtract_tdrift_vs_time[1][cycle]-
>SetPoint(CountRunNumber,ore_temp[1],(tdrift_temp[0]-tdrift_temp[2])); 
   graph_subtract_tdrift_vs_time[1][cycle]->SetPointError(CountRunNumber,0, 
         
sqrt((err_tdrift_temp[0]*err_tdrift_temp[0])+ 
              
(err_tdrift_temp[2]*err_tdrift_temp[2]))); 
 } 
 if(padNumber==2){ 
   sprintf(title_for_graphs,"y:tdrift vs x:time tube(2-3) BML%d, multi%d",-
2+(cycle>>1), 1+(cycle&1) ); 
 
   graph_subtract_tdrift_vs_time[2][cycle]-
>SetPoint(CountRunNumber,ore_temp[2],(tdrift_temp[1]-tdrift_temp[2])); 
   graph_subtract_tdrift_vs_time[2][cycle]->SetPointError(CountRunNumber,0, 
         
sqrt((err_tdrift_temp[1]*err_tdrift_temp[1])+ 
              
(err_tdrift_temp[2]*err_tdrift_temp[2]))); 
 } 
 
 graph_subtract_tdrift_vs_time[padNumber][cycle]->SetTitle(title_for_graphs); 
  
   } 
      } 
 
      for(int cycle = 0; cycle < 4; cycle++){ 
 
      // Creating the Canvas... 
      char name_for_canvas[10]; 
      char title_for_canvas[50]; 
      sprintf(name_for_canvas,"c1_cycle%d",cycle+1); 
      sprintf(title_for_canvas,"difference of tdrift vs time cycle%d",cycle+1); 
      c1[cycle] = new TCanvas(name_for_canvas,title_for_canvas); 
 
      for(int padNumber = 0; padNumber < 3; padNumber++){ 
 
 char name_for_pad[10]; 
 char title_for_pad[50]; 
 
 if(padNumber==0){ 
   sprintf(name_for_pad,"pad_c1_tube1minus2_cycle%d",cycle+1); 
   sprintf(title_for_pad,"difference of tdrift vs time, tube(1-2) 
cycle%d",cycle+1); 
   pad_c1[padNumber][cycle] = new 
TPad(name_for_pad,title_for_pad,0.01,0.51,0.49,0.99);  //  top left pad 
 } 
 if(padNumber==1){ 
   sprintf(name_for_pad,"pad_c1_tube1minus3_cycle%d",cycle+1); 
   sprintf(title_for_pad,"difference of tdrift vs time, tube(1-3) 
cycle%d",cycle+1); 
   pad_c1[padNumber][cycle] = new 
TPad(name_for_pad,title_for_pad,0.51,0.51,0.99,0.99);  //  top right pad 
 } 
 if(padNumber==2){ 
   sprintf(name_for_pad,"pad_c1_tube2minus3_cycle%d",cycle+1); 
   sprintf(title_for_pad,"difference of tdrift vs time, tube(2-3) 
cycle%d",cycle+1); 
   pad_c1[padNumber][cycle] = new 
TPad(name_for_pad,title_for_pad,0.01,0.01,0.49,0.49);  //  bot left pad 
 } 
  
 c1[cycle]->cd(); 
 pad_c1[padNumber][cycle]->Draw(); 
 pad_c1[padNumber][cycle]->cd(); 
 
 (graph_subtract_tdrift_vs_time[padNumber][cycle]->GetYaxis())->SetLimits(-13,13); 
 (graph_subtract_tdrift_vs_time[padNumber][cycle]->GetYaxis())->UnZoom(); 
 

 67



 (graph_subtract_tdrift_vs_time[padNumber][cycle]->GetYaxis())-
>SetTitle("difference in tdrift (ns)"); 
 (graph_subtract_tdrift_vs_time[padNumber][cycle]->GetXaxis())->SetTitle("time 
(hours)"); 
  
 graph_subtract_tdrift_vs_time[padNumber][cycle]->Draw("AP"); 
  
 pad_c1[padNumber][cycle]->Modified(); 
 c1[cycle]->cd(); 
       
       }// ending padNumber loop for displaying images 
  
      char output_ps_filename[70]; 
      char output_gif_filename[70]; 
      
sprintf(output_ps_filename,"immagini/tdrift_sub_vs_time/diff_of_tdrift_vs_time_cycle%d.ps
",cycle+1); 
      
sprintf(output_gif_filename,"immagini/tdrift_sub_vs_time/diff_of_tdrift_vs_time_cycle%d.g
if",cycle+1); 
       
      c1[cycle]->SetCanvasSize(950,712); 
      c1[cycle]->SaveAs(output_ps_filename); 
      c1[cycle]->SaveAs(output_gif_filename); 
       
    }// ending cycle loop for displaying images 
 
    cout << "We made cuts: " << endl; 
    cout << "nEntries >= "<<cut_nEntries<<" && error <= "<<cut_error<<" ns"<<endl<<endl; 
} 
 
 
 
 
 
4.2 Appendix B 
 
4.2.1 Macro 5 
 
/
 
/ This macro simulates the mdttdc spectra for various amounts of water.   

#include <sstream> 
#include <iostream> 
#include <string> 
#include "TH1.h" 
#include "TFile.h" 
#include "TChain.h" 
#include "TTree.h" 
#include "TDirectory.h" 
#include "TNtuple.h" 
#include "TF1.h" 
#include "TCanvas.h" 
 
TF1  *functy=0; 
TF1  *funct4_000=0; 
TF1  *functNoise=0; 
TF1  *functGaus=0; 
TF1  *funct_fit=0; 
TF1*  funct_pars[5]; 
TH1F *hist_mdttdc; 
 
void sim_water(int water_level=000, int nEvent=100000, int rand_seed = 192837465)  
{ 
  gStyle->SetOptFit(1111); 
  gRandom = new TRandom3(rand_seed); 

 68



  char function[40]; 
 
  //  Defining constants... 
  float min_radius     = 0.062865; 
  float trigger        = 513; 
  float bit_correction = 0.78125; 
 
  //  Defining histos and functs... 
  hist_mdttdc    = new TH1F("hist_mdttdc","hist_mdttdc",2200,0,2200); 
  functNoise     = new TF1("functNoise","1",0,2000); 
  funct_fit      = new TF1("funct_fit","[0]+(([1]*(1+[2]*exp(-(x-[4])/[3])))/((1+exp((-
x+[4])/[6]))*(1+exp((x-[5])/[7]))))",0,2200); 
  functy         = new TF1("functy","1",min_radius,1.4); 
 
  funct_pars[0] = new TF1("funct_pars0","0.000445  *x + 0.034"  ,-1000,1000); 
  funct_pars[1] = new TF1("funct_pars1","-0.019135 *x + 269.048",-1000,1000); 
  funct_pars[2] = new TF1("funct_pars2","0.10092   *x - 274.528",-1000,1000); 
  funct_pars[3] = new TF1("funct_pars3","-0.093225 *x + 480.013",-1000,1000); 
  funct_pars[4] = new TF1("funct_pars4","0.03964   *x - 125.26" ,-1000,1000); 
 
  float pars[5]; 
  float pars[0] = funct_pars[0]->Eval(water_level); 
  float pars[1] = funct_pars[1]->Eval(water_level); 
  float pars[2] = funct_pars[2]->Eval(water_level); 
  float pars[3] = funct_pars[3]->Eval(water_level); 
  float pars[4] = funct_pars[4]->Eval(water_level); 
 
  for (int i=0; i<nEvent; i++ ) 
    { 
      if (i%10000 == 0)  cout<<"Event #: "<< i <<endl; 
 
      float y          = functy->GetRandom(); 
      float y_squared  = y*y; 
 
      float mdttdc = pars[0] + pars[1]*y + pars[2]*y_squared + pars[3]*y*y_squared + 
pars[4]*y_squared*y_squared; 
      float resol  = 0.004*mdttdc + 8; 
      sprintf(function,"exp(-(x*x)/(2*%f*%f))",resol,resol); 
      functGaus        = new TF1("functGaus",function,-1000,1000); 
      float randy      = functGaus->GetRandom(); 
      hist_mdttdc->Fill((mdttdc + randy + trigger)/bit_correction);       
    } 
   
  for (int k=0; k<int(nEvent*0.15); k++)  hist_mdttdc->Fill(functNoise->GetRandom()); 
 
  int file_part; 
  cout << "which part of the file is this (1,2,3)? " << endl; 
  cin >> file_part; 
  char filename[120]; 
  if (file_part == 1){ 
    sprintf(filename,"files_combining/file%d_1.root",water_level); 
    TFile *file_1 = new TFile(filename,"RECREATE","Description"); 
    hist_mdttdc->SetDirectory(file_1); 
    file_1->Write(); 
  } 
  if (file_part == 2){ 
    sprintf(filename,"files_combining/file%d_2.root",water_level); 
    TFile *file_2 = new TFile(filename,"RECREATE","Description"); 
    hist_mdttdc->SetDirectory(file_2); 
    file_2->Write(); 
  } 
  if (file_part == 3){ 
    sprintf(filename,"files_combining/file%d_3.root",water_level); 
    TFile *file_3 = new TFile(filename,"RECREATE","Description"); 
    hist_mdttdc->SetDirectory(file_3); 
    file_3->Write(); 
  } 
} 
 
 
 

 69



4.2.2 Macro 6 
 
//  This macro takes all of the histos from the files_combining folder 
//  and combines them, fits them, and plots a graph of delta_Tdrift vs  
//  humidity.  It is mainly to show that there is a linear relation  
//  between the two.   
 
 
#include <sstream> 
#include <iostream> 
#include <string> 
#include "TH1.h" 
#include "TFile.h" 
#include "TChain.h" 
#include "TTree.h" 
#include "TDirectory.h" 
#include "TNtuple.h" 
#include "TF1.h" 
#include "TCanvas.h" 
 
TH1F* hist_mdttdc_local[14]; // to differentiate from the histos that we are pulling out 
of the files. 
TF1 *funct_fit; 
TGraphErrors *graph_tdrift_sub_vs_water; 
float tdrift[14]; 
float tdrift_err[14]; 
float diff_tdrift[14][3]; 
 
void combining_all3() 
{ 
  int water_levels[] = {0,15,30,45,60,75,90,105,120,135,150,165,180,200}; 
  char hist_name[40]; 
 
  for (int k = 0; k < 14; k++) 
    { 
      sprintf(hist_name,"hist_mdttdc_local_%d",water_levels[k]); 
      hist_mdttdc_local[k]  = new TH1F(hist_name,hist_name,2200,0,2200); 
    } 
 
  TFile *file_1 = TFile::Open("files_combining/file0_1.root"); 
  hist_mdttdc_local[0]->Add(hist_mdttdc,1); 
  TFile *file_2 = TFile::Open("files_combining/file0_2.root"); 
  hist_mdttdc_local[0]->Add(hist_mdttdc,1); 
 
  TFile  *file15 = TFile::Open("files_combining/file15_1.root"); 
  hist_mdttdc_local[1]->Add(hist_mdttdc,1); 
  TFile  *file15_2 = TFile::Open("files_combining/file15_2.root"); 
  hist_mdttdc_local[1]->Add(hist_mdttdc,1); 
 
  TFile  *file30 = TFile::Open("files_combining/file30_1.root"); 
  hist_mdttdc_local[2]->Add(hist_mdttdc,1); 
  TFile  *file30_2 = TFile::Open("files_combining/file30_2.root"); 
  hist_mdttdc_local[2]->Add(hist_mdttdc,1); 
 
  TFile  *file45 = TFile::Open("files_combining/file45_1.root"); 
  hist_mdttdc_local[3]->Add(hist_mdttdc,1); 
  TFile  *file45_2 = TFile::Open("files_combining/file45_2.root"); 
  hist_mdttdc_local[3]->Add(hist_mdttdc,1); 
 
  TFile  *file60 = TFile::Open("files_combining/file60_1.root"); 
  hist_mdttdc_local[4]->Add(hist_mdttdc,1); 
  TFile  *file60_2 = TFile::Open("files_combining/file60_2.root"); 
  hist_mdttdc_local[4]->Add(hist_mdttdc,1); 
   
  TFile  *file75 = TFile::Open("files_combining/file75_1.root"); 
  hist_mdttdc_local[5]->Add(hist_mdttdc,1); 
  TFile  *file75_2 = TFile::Open("files_combining/file75_2.root"); 
  hist_mdttdc_local[5]->Add(hist_mdttdc,1); 
   
  TFile  *file90 = TFile::Open("files_combining/file90_1.root"); 

 70



  hist_mdttdc_local[6]->Add(hist_mdttdc,1); 
  TFile  *file90_2 = TFile::Open("files_combining/file90_2.root"); 
  hist_mdttdc_local[6]->Add(hist_mdttdc,1); 
 
  TFile *file105 = TFile::Open("files_combining/file105_1.root"); 
  hist_mdttdc_local[7]->Add(hist_mdttdc,1); 
  TFile *file105_2 = TFile::Open("files_combining/file105_2.root"); 
  hist_mdttdc_local[7]->Add(hist_mdttdc,1); 
 
  TFile *file120 = TFile::Open("files_combining/file120_1.root"); 
  hist_mdttdc_local[8]->Add(hist_mdttdc,1); 
  TFile *file120_2 = TFile::Open("files_combining/file120_2.root"); 
  hist_mdttdc_local[8]->Add(hist_mdttdc,1); 
 
  TFile *file135 = TFile::Open("files_combining/file135_1.root"); 
  hist_mdttdc_local[9]->Add(hist_mdttdc,1); 
  TFile *file135_2 = TFile::Open("files_combining/file135_2.root"); 
  hist_mdttdc_local[9]->Add(hist_mdttdc,1); 
 
  TFile *file150 = TFile::Open("files_combining/file150_1.root"); 
  hist_mdttdc_local[10]->Add(hist_mdttdc,1); 
  TFile *file150_2 = TFile::Open("files_combining/file150_2.root"); 
  hist_mdttdc_local[10]->Add(hist_mdttdc,1); 
 
  TFile *file165 = TFile::Open("files_combining/file165_1.root"); 
  hist_mdttdc_local[11]->Add(hist_mdttdc,1); 
  TFile *file165_2 = TFile::Open("files_combining/file165_2.root"); 
  hist_mdttdc_local[11]->Add(hist_mdttdc,1); 
 
  TFile *file180 = TFile::Open("files_combining/file180_1.root"); 
  hist_mdttdc_local[12]->Add(hist_mdttdc,1); 
  TFile *file180_2 = TFile::Open("files_combining/file180_2.root"); 
  hist_mdttdc_local[12]->Add(hist_mdttdc,1); 
 
  TFile *file200 = TFile::Open("files_combining/file200_1.root"); 
  hist_mdttdc_local[13]->Add(hist_mdttdc,1); 
  TFile *file200_2 = TFile::Open("files_combining/file200_2.root"); 
  hist_mdttdc_local[13]->Add(hist_mdttdc,1); 
 
  funct_fit = new TF1("funct_fit","[0]+(([1]*(1+[2]*exp(-(x-[4])/[3])))/((1+exp((-
x+[4])/[6]))*(1+exp((x-[5])/[7]))))",0,2200); 
  funct_line_000_200 = new TF1("funct_line_000_200","0.0683*x",0,210); 
  gStyle->SetOptFit(1111); 
   
  // Setting Par names, limits and fitting 000ppm... 
  funct_fit->SetParName(0,"noise"); 
  funct_fit->SetParName(1,"amp"); 
  funct_fit->SetParName(2,"dip_amp"); 
  funct_fit->SetParName(3,"dip"); 
  funct_fit->SetParName(4,"t0"); 
  funct_fit->SetParName(5,"tmax"); 
  funct_fit->SetParName(6,"resol_t0"); 
  funct_fit->SetParName(7,"resol_tmax"); 
  funct_fit->SetParLimits( 0, 0,     500); 
  funct_fit->SetParLimits( 1, 0.002, 22000); 
  funct_fit->SetParLimits( 2, 0.085, 8500); 
  funct_fit->SetParLimits( 3, 0.02,  20000); 
  funct_fit->SetParLimits( 4, 550,   800); 
  funct_fit->SetParLimits( 5, 1380,  1700); 
  funct_fit->SetParLimits( 6, 0.5,   70); 
  funct_fit->SetParLimits( 7, 0.5,   100); 
  double pars_init[] = {0.22, 26, 8.5, 180, 660, 1480, 20, 22.4}; 
 
  graph_tdrift_sub_vs_water = new TGraphErrors(14); 
 
  // Fitting the rest of the simulated mdttdc histos (30 - 200 ppm): 
  for (int k = 0; k < 14; k++) 
    { 
      funct_fit->SetParameters(pars_init); 
      hist_mdttdc_local[k]->Fit("funct_fit","NQ","",550,1650); 
      tdrift[k] = (funct_fit->GetParameter(5))-(funct_fit->GetParameter(4)); 

 71



      tdrift_err[k] = sqrt((funct_fit->GetParError(5))*(funct_fit->GetParError(5))-
(funct_fit->GetParError(4))*(funct_fit->GetParError(4))); 
 
      diff_tdrift[k][0] = water_levels[k]; 
      diff_tdrift[k][1] = (tdrift[k]-tdrift[0]) *0.78125; 
      diff_tdrift[k][2] = (tdrift_err[k]) *0.78125; 
      //cout << water_levels[k] << " " << diff_tdrift[k][1] << endl; 
 
      // Setting the points on the graph:  
      graph_tdrift_sub_vs_water->SetPoint(k, water_levels[k], diff_tdrift[k][1]); 
      graph_tdrift_sub_vs_water->SetPointError(k, 0, diff_tdrift[k][2]); 
 
      cout << "k: " << k << " water_level: " << water_levels[k] << endl; 
      cout << "     tdrift:      " << tdrift[k] << endl; 
      cout << "     tdrift_err:  " << tdrift_err[k] << endl; 
      cout << "     diff_tdrift: " << diff_tdrift[k][1] << endl << endl; 
    } 
 
  //for (int j=1; j<14; j++)  cout << diff_tdrift[j][1]-diff_tdrift[j-1][1] << endl; 
 
 
  TCanvas *c1 = new TCanvas("c1","c1"); 
  graph_tdrift_sub_vs_water->Draw("AP"); 
  funct_line_000_200->SetLineColor(2); 
  funct_line_000_200->Draw("same"); 
  graph_tdrift_sub_vs_water->Fit("pol1"); 
 
} 
 
 
 
 
 
 

 72



5. References 
 
5.1 Works Cited 
 
[1] Halzen, Francis, and Alan D. Martin. Quarks and Leptons: An Introductory Course in 

Modern Particle Physics.  New York: John Wiley & Sons, Inc., 1984.   
 
[2] Tipler, Paul A. Elementary Modern Physics. New York: Worth Publishers, Inc., 1992.   
 
[3] http://pdg.lbl.gov/2002/contents_tables.html 
 
[4] Fernow, Richard. Introduction to Experimental Particle Physics. New York: 

Cambridge University Press, 1986.   
 
[5] Povh, Bogdan, et al., Particles and Nuclei: An Introduction to the Physical Concepts.  

New York: Springer, 2002.   
 
[6] Leo, William R. Techniques for Nuclear and Particle Physics Experiments: A How-to 

Approach, 2nd Revised Edition. New York: Springer, 1994.   
 
[7] http://www.phenix.bnl.gov/index.html 
 
[8] http://www.phys.ufl.edu/~rfield/cdf/chgjet/etaphi.html 
 
[9] http://atlas.web.cern.ch/Atlas/ 
 
[10] ATLAS Muon Collaboration. ATLAS Muon Spectrometer: Technical Design 

Report.Geneva: CERN/LHCC 97-22, 1997.   
 
[11] http://physics.bu.edu/ATLAS/ATLAS-info/withframes.html 
 
[12] ATLAS Collaboration. ATLAS Technical Proposal for a General-Purpose pp 

Experiment at the Large Hadron Collider at CERN. Geneva: CERN/LHCC 94-43, 
1994.   

 
[13] http://ppewww.ph.gla.ac.uk/preprints/1999/17/SaxonPSD5web.rtf 
 
[14] First Results of the 2001 MDT chambers beam test, G. Avolio et al., CERN internal 

note: ATL-MUON-2003-001.   
 
[15] http://www.geplastics.com/resins/global/pdf/design_guides/propertiessec2.pdf 
 
[16] Kamin, Jason.  Lifetime of Muon.  PHYSICS 350 Advanced Physics Laboratory, 

Smith College with Piotr Decowski, 2002.   
 

 73



5.2 General References 
 
[16] Carroll, Bradley W. and Dale A. Ostlie. An Introduction to Modern Astrophysics.  

New York: Addison-Wesley Publishing Company, Inc., 1996.   
 
[17] Halliday, David, Robert Resnick, and Jearl Walker.  Fundamentals of Physics 6th 

Edition.  New York: John Wiley & Sons, Inc., 2001.   
 
[18] http://garfield.web.cern.ch/garfield/ 
 
[19] K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002) 
 
[20] Taylor, John R. Introduction to Error Analysis. New York: University Science 

Books, 1997.   
 
 

 74




